# American Institute of Mathematical Sciences

• Previous Article
Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application
• CPAA Home
• This Issue
• Next Article
Cyclicity of degenerate graphic $DF_{2a}$ of Dumortier-Roussarie-Rousseau program
May 2018, 17(3): 1295-1304. doi: 10.3934/cpaa.2018062

## Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system

 1 Department of Mathematics, Indian Institute of Technology Madras, Chennai-600036, India 2 Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27412, USA 3 Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

* Corresponding author: R. Shivaji.

Received  March 2016 Revised  August 2016 Published  January 2018

In this paper we study the positive solutions to the
 $n\times n$
 $p$
-Laplacian system:
 $\begin{equation*}\begin{cases}-\left(\varphi_{p_1}(u_1')\right)' = \lambda h_1(t) \left(u_1^{p_1-1-\alpha_1}+f_1(u_2)\right),\quad t\in (0,1),\\-\left(\varphi_{p_2}(u_2')\right)' = \lambda h_2(t) \left(u_2^{p_2-1-\alpha_2}+f_2(u_3)\right),\quad t\in (0,1),\\\quad\quad\quad\vdots\qquad\,\: =\quad\quad\quad\quad\quad\quad \vdots\\-\left(\varphi_{p_n}(u_n')\right)' = \lambda h_n(t) \left(u_n^{p_n-1-\alpha_n}+f_n(u_1)\right),~~\, t\in (0,1),\\\quad\,\,\,\, u_j(0)=0=u_j(1); ~~ j=1,2,\dots,n, \\ \end{cases}\end{equation*}$
where
 $\lambda$
is a positive parameter,
 $p_j>1$
,
 $\alpha_j\in(0,p_j-1)$
,
 $\varphi_{p_j}(w)=|w|^{p_j-2}w$
, and
 $h_j \in C((0,1),(0, \infty))\cap L^1((0,1),(0,\infty))$
for
 $j=1,2,\dots,n$
. Here
 $f_j:[0,\infty)\rightarrow[0,\infty)$
,
 $j=1,2,\dots,n$
are nontrivial nondecreasing continuous functions with
 $f_j(0)=0$
and satisfy a combined sublinear condition at infinity. We discuss here a bifurcation result, an existence result for
 $\lambda>0$
, and a multiplicity result for a certain range of
 $\lambda$
. We establish our results through the method of sub-super solutions.
Citation: Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062
##### References:
 [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 229-256. [2] Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional p-Laplacian, J. Differential Equations, 229 (2006), 620-709. [3] R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc., 37 (2000), 665-685. [4] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture Notes in Pure and Appl. Math., 109 (1987), 561-566. [5] R. Shivaji and B. Son, Bifurcation and multiplicity results for classes of $p,q$ Laplacian systems, Topol. Methods Nonlinear Anal., 48 (2016), 103-114.

show all references

##### References:
 [1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 229-256. [2] Y. H. Lee and I. Sim, Global bifurcation phenomena for singular one-dimensional p-Laplacian, J. Differential Equations, 229 (2006), 620-709. [3] R. Manásevich and J. Mawhin, Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc., 37 (2000), 665-685. [4] R. Shivaji, A remark on the existence of three solutions via sub-super solutions, Nonlinear Analysis and Applications, Lecture Notes in Pure and Appl. Math., 109 (1987), 561-566. [5] R. Shivaji and B. Son, Bifurcation and multiplicity results for classes of $p,q$ Laplacian systems, Topol. Methods Nonlinear Anal., 48 (2016), 103-114.
Bifurcation of solution from the origin.
Bifurcation for all $\lambda>0.$
Multiplicity results for certain range of $\lambda$ .
 [1] Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $p \& q$ Laplacian problems in $\mathbb{R} ^{N}$. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091 [2] Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $p$-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070 [3] Gabriele Bonanno, Giuseppina D'Aguì. Mixed elliptic problems involving the $p-$Laplacian with nonhomogeneous boundary conditions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5797-5817. doi: 10.3934/dcds.2017252 [4] Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109 [5] Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129 [6] Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016 [7] Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011 [8] Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 2085-2095. doi: 10.3934/dcdss.2019134 [9] Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082 [10] Lianjun Zhang, Lingchen Kong, Yan Li, Shenglong Zhou. A smoothing iterative method for quantile regression with nonconvex $\ell_p$ penalty. Journal of Industrial & Management Optimization, 2017, 13 (1) : 93-112. doi: 10.3934/jimo.2016006 [11] Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124 [12] VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $p(x)$-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003 [13] Woocheol Choi, Yong-Cheol Kim. $L^p$ mapping properties for nonlocal Schrödinger operators with certain potentials. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5811-5834. doi: 10.3934/dcds.2018253 [14] Shixiong Wang, Longjiang Qu, Chao Li, Huaxiong Wang. Further improvement of factoring $N = p^r q^s$ with partial known bits. Advances in Mathematics of Communications, 2019, 13 (1) : 121-135. doi: 10.3934/amc.2019007 [15] Harbir Antil, Mahamadi Warma. Optimal control of the coefficient for the regional fractional $p$-Laplace equation: Approximation and convergence. Mathematical Control & Related Fields, 2019, 9 (1) : 1-38. doi: 10.3934/mcrf.2019001 [16] Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $L^p$ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085 [17] Imed Bachar, Habib Mâagli. Singular solutions of a nonlinear equation in a punctured domain of $\mathbb{R}^{2}$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 171-188. doi: 10.3934/dcdss.2019012 [18] Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059 [19] Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077 [20] Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

2017 Impact Factor: 0.884