2018, 17(3): 1071-1101. doi: 10.3934/cpaa.2018052

Scattering for the two dimensional NLS with (full) exponential nonlinearity

UCLA Department of Mathematics, 520 Portola Plaza, Math Sciences Building 6363, Los Angeles, CA 90095-1555, USA

* Corresponding author

Received  October 2016 Revised  August 2017 Published  January 2018

Fund Project: The first author is supported by NSF grant DMS 1265868 and DMS-1500707

We obtain global well-posedness, scattering, and global
$L_t^4H_{x}^{1,4}$
spacetime bounds for energy-space solutions to the energy-subcritical nonlinear Schrödinger equation
$iu_t+Δ u = u(e^{4π |u|^2}-1)$
in two spatial dimensions. Our approach is perturbative; we view our problem as a perturbation of the mass-critical NLS to employ the techniques of Tao-Visan-Zhang from [25]. This permits us to combine the known spacetime estimates for mass-critical NLS proved by Dodson [12] and the work of [15] and [14] to prove corresponding spacetime estimates which imply scattering.
Citation: A. Adam Azzam. Scattering for the two dimensional NLS with (full) exponential nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1071-1101. doi: 10.3934/cpaa.2018052
References:
[1]

S. Adachi and K. Tanaka, Trudinger type inequalities in ${{\bf{R}}^{N}}$ and their best exponents, Proc. Amer. Math. Soc., 128 (2000), 2051-2057.

[2]

H. BahouriS. Ibrahim and G. Perelman, Scattering for the critical 2-D NLS with exponential growth, Differential Integral Equations, 27 (2014), 233-268.

[3]

A. Biryuk, An optimal limiting 2D Sobolev inequality, Proc. Amer. Math. Soc., 138 (2010), 1461-1470.

[4]

J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998), 267-297.

[5]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171.

[6]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[7]

T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the subcritical case, in New Methods and Results in Nonlinear Field Equations (Bielefeld, 1987), vol. 347 of Lecture Notes in Phys., Springer, Berlin, 1989, 59-69.

[8]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.

[9]

J. CollianderM. Grillakis and N. Tzirakis, Tensor products and correlation estimates with applications to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 62 (2009), 920-968.

[10]

J. CollianderS. IbrahimM. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., 6 (2009), 549-575.

[11]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2), 167 (2008), 767-865.

[12]

B. Dodson, Global well-posedness and scattering for the defocusing, $l^{2}$-critical, nonlinear schrödinger equation when $d = 2$, Duke Math. J., 165 (2016), 3435-3516.

[13]

S. IbrahimM. Majdoub and N. Masmoudi, Double logarithmic inequality with a sharp constant, Proc. Amer. Math. Soc., 135 (2007), 87-97 (electronic).

[14]

S. IbrahimM. MajdoubN. Masmoudi and K. Nakanishi, Scattering for the two-dimensional energy-critical wave equation, Duke Math. J., 150 (2009), 287-329.

[15]

S. IbrahimM. MajdoubN. Masmoudi and K. Nakanishi, Scattering for the two-dimensional NLS with exponential nonlinearity, Nonlinearity, 25 (2012), 1843-1849.

[16]

S. IbrahimN. Masmoudi and K. Nakanishi, Trudinger -moser inequality on the whole plane with the exact growth condition, Journal of the European Mathematical Society, (), 819-835.

[17]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.

[18]

R. KillipT. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.

[19]

R. Killip and M. Visan, Evolution Equations, vol. 17 of Clay Mathematics Proceedings, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2013, Lecture notes from the Clay Mathematics Institute Summer School held at the Eidgenössische Technische Hochschule (ETH), Zürich, June 23-July 18,2008.

[20]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.

[21]

K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, J. Funct. Anal., 169 (1999), 201-225.

[22]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261-290.

[23]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\Bbb R^2$, J. Funct. Anal., 219 (2005), 340-367.

[24]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math., 129 (2007), 1-60.

[25]

T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.

[26]

N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.

[27]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.

show all references

References:
[1]

S. Adachi and K. Tanaka, Trudinger type inequalities in ${{\bf{R}}^{N}}$ and their best exponents, Proc. Amer. Math. Soc., 128 (2000), 2051-2057.

[2]

H. BahouriS. Ibrahim and G. Perelman, Scattering for the critical 2-D NLS with exponential growth, Differential Integral Equations, 27 (2014), 233-268.

[3]

A. Biryuk, An optimal limiting 2D Sobolev inequality, Proc. Amer. Math. Soc., 138 (2010), 1461-1470.

[4]

J. Bourgain, Scattering in the energy space and below for 3D NLS, J. Anal. Math., 75 (1998), 267-297.

[5]

J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171.

[6]

T. Cazenave, Semilinear Schrödinger Equations, vol. 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[7]

T. Cazenave and F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the subcritical case, in New Methods and Results in Nonlinear Field Equations (Bielefeld, 1987), vol. 347 of Lecture Notes in Phys., Springer, Berlin, 1989, 59-69.

[8]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal., 14 (1990), 807-836.

[9]

J. CollianderM. Grillakis and N. Tzirakis, Tensor products and correlation estimates with applications to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 62 (2009), 920-968.

[10]

J. CollianderS. IbrahimM. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., 6 (2009), 549-575.

[11]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2), 167 (2008), 767-865.

[12]

B. Dodson, Global well-posedness and scattering for the defocusing, $l^{2}$-critical, nonlinear schrödinger equation when $d = 2$, Duke Math. J., 165 (2016), 3435-3516.

[13]

S. IbrahimM. Majdoub and N. Masmoudi, Double logarithmic inequality with a sharp constant, Proc. Amer. Math. Soc., 135 (2007), 87-97 (electronic).

[14]

S. IbrahimM. MajdoubN. Masmoudi and K. Nakanishi, Scattering for the two-dimensional energy-critical wave equation, Duke Math. J., 150 (2009), 287-329.

[15]

S. IbrahimM. MajdoubN. Masmoudi and K. Nakanishi, Scattering for the two-dimensional NLS with exponential nonlinearity, Nonlinearity, 25 (2012), 1843-1849.

[16]

S. IbrahimN. Masmoudi and K. Nakanishi, Trudinger -moser inequality on the whole plane with the exact growth condition, Journal of the European Mathematical Society, (), 819-835.

[17]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.

[18]

R. KillipT. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203-1258.

[19]

R. Killip and M. Visan, Evolution Equations, vol. 17 of Clay Mathematics Proceedings, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2013, Lecture notes from the Clay Mathematics Institute Summer School held at the Eidgenössische Technische Hochschule (ETH), Zürich, June 23-July 18,2008.

[20]

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970/71), 1077-1092.

[21]

K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2, J. Funct. Anal., 169 (1999), 201-225.

[22]

F. Planchon and L. Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 261-290.

[23]

B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\Bbb R^2$, J. Funct. Anal., 219 (2005), 340-367.

[24]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math., 129 (2007), 1-60.

[25]

T. TaoM. Visan and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, 32 (2007), 1281-1343.

[26]

N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483.

[27]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374.

[1]

Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity? . Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378

[2]

Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011

[3]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[4]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[5]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[6]

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275

[7]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[8]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[9]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[10]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[11]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[12]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[13]

Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031

[14]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[15]

Joachim Krieger, Kenji Nakanishi, Wilhelm Schlag. Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2423-2450. doi: 10.3934/dcds.2013.33.2423

[16]

Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455

[17]

Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487

[18]

Casey Jao. Energy-critical NLS with potentials of quadratic growth. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 563-587. doi: 10.3934/dcds.2018025

[19]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[20]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

2016 Impact Factor: 0.801

Article outline

[Back to Top]