• Previous Article
    Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities
  • CPAA Home
  • This Issue
  • Next Article
    Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval
May 2018, 17(3): 899-922. doi: 10.3934/cpaa.2018045

Positive powers of the Laplacian: From hypersingular integrals to boundary value problems

1. 

Département de Mathématique, Université Libre de Bruxelles, boulevard du Triomphe CP 214, 1050 Bruxelles, Belgium

2. 

Institut für Mathematik, Goethe-Universität, Robert-Mayer-Straße 10, 60054 Frankfurt, Germany

3. 

Institut für Analysis, Karlsruher Institut für Technologie, Englerstraße 2, 76131 Karlsruhe, Germany

Received  September 2017 Revised  September 2017 Published  January 2018

Fund Project: The third author was supported by a research fellowship from the Alexander von Humboldt Foundation

Any positive power of the Laplacian is related via its Fourier symbol to a hypersingular integral with finite differences. We show how this yields a pointwise evaluation which is more flexible than other notions used so far in the literature for powers larger than 1; in particular, this evaluation can be applied to more general boundary value problems and we exhibit explicit examples. We also provide a natural variational framework and, using an asymptotic analysis, we prove how these hypersingular integrals reduce to polyharmonic operators in some cases. Our presentation aims to be as self-contained as possible and relies on elementary pointwise calculations and known identities for special functions.

Citation: Nicola Abatangelo, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian: From hypersingular integrals to boundary value problems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 899-922. doi: 10.3934/cpaa.2018045
References:
[1]

N. Abatangelo, S. Jarohs and A. Saldaña, On the maximum principle for higher-order fractional Laplacians, preprint, arXiv: 1607.00929.

[2]

N. Abatangelo, S. Jarohs and A. Saldaña, Integral representation of solutions to higher-order fractional Dirichlet problems on balls, to appear on Comm. Cont. Math., preprint at arXiv: 1707.03603.

[3]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, volume 20 of Lecture Notes of the UMI, Springer International Publishing (Switzerland), 2016.

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.

[5]

S. Dipierro and H.-C. Grunau, Boggio's formula for fractional polyharmonic Dirichlet problems, Ann. Mat. Pura Appl., 196 (2017), 1327-1344.

[6]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954.

[7]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.

[8]

F. Gazzola, H. -C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, volume 1991 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010.

[9]

X. Ros-Oton and J. Serra, Local integration by parts and Pohozaev identities for higher order fractional Laplacians, Discrete Contin. Dyn. Syst., 35 (2015), 2131-2150.

[10]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.

[11]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.

[12]

X. Tian and Q. Du, A class of high order nonlocal operators, Arch. Ration. Mech. Anal., 222 (2016), 1521-1553.

show all references

References:
[1]

N. Abatangelo, S. Jarohs and A. Saldaña, On the maximum principle for higher-order fractional Laplacians, preprint, arXiv: 1607.00929.

[2]

N. Abatangelo, S. Jarohs and A. Saldaña, Integral representation of solutions to higher-order fractional Dirichlet problems on balls, to appear on Comm. Cont. Math., preprint at arXiv: 1707.03603.

[3]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, volume 20 of Lecture Notes of the UMI, Springer International Publishing (Switzerland), 2016.

[4]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.

[5]

S. Dipierro and H.-C. Grunau, Boggio's formula for fractional polyharmonic Dirichlet problems, Ann. Mat. Pura Appl., 196 (2017), 1327-1344.

[6]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. I, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954.

[7]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.

[8]

F. Gazzola, H. -C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, volume 1991 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010.

[9]

X. Ros-Oton and J. Serra, Local integration by parts and Pohozaev identities for higher order fractional Laplacians, Discrete Contin. Dyn. Syst., 35 (2015), 2131-2150.

[10]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.

[11]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.

[12]

X. Tian and Q. Du, A class of high order nonlocal operators, Arch. Ration. Mech. Anal., 222 (2016), 1521-1553.

[1]

Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851-860. doi: 10.3934/proc.2015.0851

[2]

Huijun He, Zhaoyang Yin. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1509-1537. doi: 10.3934/dcds.2017062

[3]

J. Ángel Cid, Pedro J. Torres. Solvability for some boundary value problems with $\phi$-Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 727-732. doi: 10.3934/dcds.2009.23.727

[4]

John Baxley, Mary E. Cunningham, M. Kathryn McKinnon. Higher order boundary value problems with multiple solutions: examples and techniques. Conference Publications, 2005, 2005 (Special) : 84-90. doi: 10.3934/proc.2005.2005.84

[5]

Feliz Minhós, A. I. Santos. Higher order two-point boundary value problems with asymmetric growth. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 127-137. doi: 10.3934/dcdss.2008.1.127

[6]

Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure & Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83

[7]

Alberto Cabada, J. Ángel Cid. Heteroclinic solutions for non-autonomous boundary value problems with singular $\Phi$-Laplacian operators. Conference Publications, 2009, 2009 (Special) : 118-122. doi: 10.3934/proc.2009.2009.118

[8]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[9]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[10]

K. Q. Lan. Properties of kernels and eigenvalues for three point boundary value problems. Conference Publications, 2005, 2005 (Special) : 546-555. doi: 10.3934/proc.2005.2005.546

[11]

John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515

[12]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[13]

Olga A. Brezhneva, Alexey A. Tret’yakov, Jerrold E. Marsden. Higher--order implicit function theorems and degenerate nonlinear boundary-value problems. Communications on Pure & Applied Analysis, 2008, 7 (2) : 293-315. doi: 10.3934/cpaa.2008.7.293

[14]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[15]

John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

[16]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether currents for higher-order variational problems of Herglotz type with time delay. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 91-102. doi: 10.3934/dcdss.2018006

[17]

Qilin Wang, Liu He, Shengjie Li. Higher-order weak radial epiderivatives and non-convex set-valued optimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018051

[18]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[19]

R. Kannan, S. Seikkala. Existence of solutions to some Phi-Laplacian boundary value problems. Conference Publications, 2001, 2001 (Special) : 211-217. doi: 10.3934/proc.2001.2001.211

[20]

Yutong Chen, Jiabao Su. Resonant problems for fractional Laplacian. Communications on Pure & Applied Analysis, 2017, 16 (1) : 163-188. doi: 10.3934/cpaa.2017008

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (32)
  • HTML views (185)
  • Cited by (0)

[Back to Top]