March 2018, 17(2): 605-626. doi: 10.3934/cpaa.2018033

Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity

1. 

School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan, 430074, China

2. 

School of Mathematics and Statistics, Hubei Engineering University, Xiaogan, 432000, China

Received  May 2017 Revised  July 2017 Published  March 2018

In the present paper the following Kirchhoff-Schrödinger-Poisson system is studied:
$\left\{ \begin{gathered} - \left( {a + b\int_{{\mathbb{R}^3}} {{{\left| {\nabla u} \right|}^2}{\text{d}}x} } \right)\Delta u + \mu \phi \left( x \right)u =f\left( u \right)\;\;\;&{\text{in}}\;\;{{\mathbb{R}}^3}, \hfill \\ - \Delta \phi =\mu {u^2}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;&{\text{in}}\;\;{{\mathbb{R}}^3}, \hfill \\ \end{gathered} \right.$
where
$a>0,b≥q0 $
are constants and
$μ>0 $
is a parameter,
$f∈ C(\mathbb{R},\mathbb{R}) $
. Without assuming the Ambrosetti-Rabinowitz type condition and monotonicity condition on
$f $
, we establish the existence of positive radial solutions for the above system by using variational methods combining a monotonicity approach with a delicate cut-off technique. We also study the asymptotic behavior of solutions with respect to the parameter
$μ $
. In addition, we obtain the existence of multiple solutions for the nonhomogeneous case corresponding to the above problem. Our results improve and generalize some known results in the literature.
Citation: Dengfeng Lü. Positive solutions for Kirchhoff-Schrödinger-Poisson systems with general nonlinearity. Communications on Pure & Applied Analysis, 2018, 17 (2) : 605-626. doi: 10.3934/cpaa.2018033
References:
[1]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404. doi: 10.1142/S021919970800282X.

[2]

C. O. AlvesF. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. doi: 10.1016/j.camwa.2005.01.008.

[3]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057.

[4]

A. Azzollini, Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 249 (2010), 1746-1763. doi: 10.1016/j.jde.2010.07.007.

[5]

A. AzzolliniP. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. I. H. Poincaré-AN, 27 (2010), 779-791. doi: 10.1016/j.anihpc.2009.11.012.

[6]

A. AzzolliniP. d'Avenia and A. Pomponio, Multiple critical points for a class of nonlinear functionals, Ann. Mat. Pura Appl., 190 (2011), 507-523. doi: 10.1007/s10231-010-0160-3.

[7]

A. Azzollini, The elliptic Kirchhoff equation in $\mathbb{R}^{N} $ perturbed by a local nonlinearity, Differential Integral Equations, 25 (2012), 543-554. doi: 10.1142/S0219199714500394.

[8]

C. Batkam and J. R. S. Júnior, Schrödinger-Kirchhoff-Poisson type systems, Commun. Pure Appl. Anal., 15 (2016), 429-444. doi: 10.3934/cpaa.2016.15.429.

[9]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Top. Meth. Nonl. Anal., 11 (1998), 283-293. doi: 10.12775/TMNA.1998.019.

[10]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.

[11]

S. Chen and C. Tang, Multiple solutions for nonhomogeneous Schrödinger-Maxwell and Klein-Gordon-Maxwell equations on $\mathbb{R}^{3} $, Nonlinear Differ. Equ. Appl., 17 (2010), 559-574. doi: 10.1007/s00030-010-0068-z.

[12]

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data Invent. Math. 108 (1992), 247–262. doi: 10.1007/BF02100605.

[13]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906. doi: 10.1017/S030821050000353X.

[14]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. doi: 10.1515/ans-2004-0305.

[15]

P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), 177-192.

[16]

G. M. FigueiredoN. Ikoma and J. R. S. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational Mech. Anal., 213 (2014), 931-979. doi: 10.1007/s00205-014-0747-8.

[17]

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^{3} $, J. Differential Equations, 252 (2012), 1813-1834. doi: 10.1016/j.jde.2011.08.035.

[18]

Y. He and G. Li, Standing waves for a class of Kirchhoff type problems in $\mathbb{R}^{3} $ involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 54 (2015), 3067-3106. doi: 10.1007/s00526-015-0894-2.

[19]

J. HirataN. Ikoma and K. Tanaka, Nonlinear scalar field equations in $R^{N}$: mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal., 35 (2010), 253-276.

[20]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $ R^{N}$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809. doi: 10.1017/S0308210500013147.

[21]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840.

[22]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $R^{N} $, Proc. Amer. Math. Soc., 131 (2003), 2399-2408. doi: 10.1090/S0002-9939-02-06821-1.

[23]

Y. JiangZ. Wang and H.-S. Zhou, Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^{3} $, Nonlinear Anal., 83 (2013), 50-57. doi: 10.1016/j.na.2013.01.006.

[24]

H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7 (2007), 403-437. doi: 10.1515/ans-2007-0305.

[25]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

[26]

Y. LiF. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 253 (2012), 2285-2294. doi: 10.1016/j.jde.2012.05.017.

[27]

G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3} $, J. Differential Equations, 257 (2014), 566-600. doi: 10.1016/j.jde.2014.04.011.

[28]

J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346. doi: 10.1016/S0304-0208(08)70870-3.

[29]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005.

[30]

A. Salvatore, Multiple solitary waves for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^{3} $, Adv. Nonlinear Stud., 6 (2006), 157-169. doi: 10.1515/ans-2006-0203.

[31]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.

[32]

J. WangL. TianJ. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations, 253 (2012), 2314-2351. doi: 10.1016/j.jde.2012.05.023.

[33]

J. Zhang, On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth, Nonlinear Anal., 75 (2012), 6391-6401. doi: 10.1016/j.na.2012.07.008.

[34]

J. Zhang, J. Marcos do Ó and M. Squassina, Schrödinger-Poisson systems with a general critical nonlinearity Commun. Contemp. Math. (2016), 1650028, 16 pp. doi: 10.1142/S0219199716500280.

[35]

G. ZhaoX. Zhu and Y. Li, Existence of infinitely many solutions to a class of Kirchhoff-Schrödinger-Poisson system, Appl. Math. Comput., 256 (2015), 572-581. doi: 10.1016/j.amc.2015.01.038.

show all references

References:
[1]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404. doi: 10.1142/S021919970800282X.

[2]

C. O. AlvesF. J. S. A. Correa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl., 49 (2005), 85-93. doi: 10.1016/j.camwa.2005.01.008.

[3]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108. doi: 10.1016/j.jmaa.2008.03.057.

[4]

A. Azzollini, Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity, J. Differential Equations, 249 (2010), 1746-1763. doi: 10.1016/j.jde.2010.07.007.

[5]

A. AzzolliniP. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. I. H. Poincaré-AN, 27 (2010), 779-791. doi: 10.1016/j.anihpc.2009.11.012.

[6]

A. AzzolliniP. d'Avenia and A. Pomponio, Multiple critical points for a class of nonlinear functionals, Ann. Mat. Pura Appl., 190 (2011), 507-523. doi: 10.1007/s10231-010-0160-3.

[7]

A. Azzollini, The elliptic Kirchhoff equation in $\mathbb{R}^{N} $ perturbed by a local nonlinearity, Differential Integral Equations, 25 (2012), 543-554. doi: 10.1142/S0219199714500394.

[8]

C. Batkam and J. R. S. Júnior, Schrödinger-Kirchhoff-Poisson type systems, Commun. Pure Appl. Anal., 15 (2016), 429-444. doi: 10.3934/cpaa.2016.15.429.

[9]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Top. Meth. Nonl. Anal., 11 (1998), 283-293. doi: 10.12775/TMNA.1998.019.

[10]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. doi: 10.1007/BF00250555.

[11]

S. Chen and C. Tang, Multiple solutions for nonhomogeneous Schrödinger-Maxwell and Klein-Gordon-Maxwell equations on $\mathbb{R}^{3} $, Nonlinear Differ. Equ. Appl., 17 (2010), 559-574. doi: 10.1007/s00030-010-0068-z.

[12]

P. D'Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data Invent. Math. 108 (1992), 247–262. doi: 10.1007/BF02100605.

[13]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906. doi: 10.1017/S030821050000353X.

[14]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322. doi: 10.1515/ans-2004-0305.

[15]

P. d'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, Adv. Nonlinear Stud., 2 (2002), 177-192.

[16]

G. M. FigueiredoN. Ikoma and J. R. S. Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Rational Mech. Anal., 213 (2014), 931-979. doi: 10.1007/s00205-014-0747-8.

[17]

X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}^{3} $, J. Differential Equations, 252 (2012), 1813-1834. doi: 10.1016/j.jde.2011.08.035.

[18]

Y. He and G. Li, Standing waves for a class of Kirchhoff type problems in $\mathbb{R}^{3} $ involving critical Sobolev exponents, Calc. Var. Partial Differential Equations, 54 (2015), 3067-3106. doi: 10.1007/s00526-015-0894-2.

[19]

J. HirataN. Ikoma and K. Tanaka, Nonlinear scalar field equations in $R^{N}$: mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal., 35 (2010), 253-276.

[20]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $ R^{N}$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809. doi: 10.1017/S0308210500013147.

[21]

L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations, 11 (2006), 813-840.

[22]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $R^{N} $, Proc. Amer. Math. Soc., 131 (2003), 2399-2408. doi: 10.1090/S0002-9939-02-06821-1.

[23]

Y. JiangZ. Wang and H.-S. Zhou, Multiple solutions for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^{3} $, Nonlinear Anal., 83 (2013), 50-57. doi: 10.1016/j.na.2013.01.006.

[24]

H. Kikuchi, Existence and stability of standing waves for Schrödinger-Poisson-Slater equation, Adv. Nonlinear Stud., 7 (2007), 403-437. doi: 10.1515/ans-2007-0305.

[25]

G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.

[26]

Y. LiF. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations, 253 (2012), 2285-2294. doi: 10.1016/j.jde.2012.05.017.

[27]

G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3} $, J. Differential Equations, 257 (2014), 566-600. doi: 10.1016/j.jde.2014.04.011.

[28]

J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 30 (1978), 284-346. doi: 10.1016/S0304-0208(08)70870-3.

[29]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674. doi: 10.1016/j.jfa.2006.04.005.

[30]

A. Salvatore, Multiple solitary waves for a nonhomogeneous Schrödinger-Maxwell system in $\mathbb{R}^{3} $, Adv. Nonlinear Stud., 6 (2006), 157-169. doi: 10.1515/ans-2006-0203.

[31]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.

[32]

J. WangL. TianJ. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations, 253 (2012), 2314-2351. doi: 10.1016/j.jde.2012.05.023.

[33]

J. Zhang, On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth, Nonlinear Anal., 75 (2012), 6391-6401. doi: 10.1016/j.na.2012.07.008.

[34]

J. Zhang, J. Marcos do Ó and M. Squassina, Schrödinger-Poisson systems with a general critical nonlinearity Commun. Contemp. Math. (2016), 1650028, 16 pp. doi: 10.1142/S0219199716500280.

[35]

G. ZhaoX. Zhu and Y. Li, Existence of infinitely many solutions to a class of Kirchhoff-Schrödinger-Poisson system, Appl. Math. Comput., 256 (2015), 572-581. doi: 10.1016/j.amc.2015.01.038.

[1]

Amna Dabaa, O. Goubet. Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1743-1756. doi: 10.3934/cpaa.2016011

[2]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[3]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[4]

Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076

[5]

Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411

[6]

Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767

[7]

Cyril Joel Batkam, João R. Santos Júnior. Schrödinger-Kirchhoff-Poisson type systems. Communications on Pure & Applied Analysis, 2016, 15 (2) : 429-444. doi: 10.3934/cpaa.2016.15.429

[8]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[9]

Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427

[10]

Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058

[11]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[12]

Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077

[13]

Pierre-Damien Thizy. Schrödinger-Poisson systems in $4$-dimensional closed manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2257-2284. doi: 10.3934/dcds.2016.36.2257

[14]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[15]

Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91

[16]

Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721

[17]

Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 475-484. doi: 10.3934/dcds.1995.1.475

[18]

Hua Jin, Wenbin Liu, Jianjun Zhang. Multiple solutions of fractional Kirchhoff equations involving a critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 533-545. doi: 10.3934/dcdss.2018029

[19]

Zhitao Zhang, Haijun Luo. Symmetry and asymptotic behavior of ground state solutions for schrödinger systems with linear interaction. Communications on Pure & Applied Analysis, 2018, 17 (3) : 787-806. doi: 10.3934/cpaa.2018040

[20]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (57)
  • HTML views (89)
  • Cited by (0)

Other articles
by authors

[Back to Top]