• Previous Article
    Subsonic irrotational inviscid flow around certain bodies with two protruding corners
  • CPAA Home
  • This Issue
  • Next Article
    On the nonlinear convection-diffusion-reaction problem in a thin domain with a weak boundary absorption
March 2018, 17(2): 557-578. doi: 10.3934/cpaa.2018030

On the existence and computation of periodic travelling waves for a 2D water wave model

Departamento de Matemáticas, Universidad del Valle, Calle 13 No 100-00, Cali, Colombia

* Corresponding author

Received  February 2017 Revised  July 2017 Published  March 2018

In this work we establish the existence of at least one weak periodic solution in the spatial directions of a nonlinear system of two coupled differential equations associated with a 2D Boussinesq model which describes the evolution of long water waves with small amplitude under the effect of surface tension. For wave speed $0 < |c| < 1$, the problem is reduced to finding a minimum for the corresponding action integral over a closed convex subset of the space $H^{1}_k(\mathbb{R})$ ($k$-periodic functions $f∈ L_k^2(\mathbb{R})$ such that $f' ∈ L_k^2(\mathbb{R})$). For wave speed $|c|>1$, the result is a direct consequence of the Lyapunov Center Theorem since the nonlinear system can be rewritten as a $4× 4$ system with a special Hamiltonian structure. In the case $|c|>1$, we also compute numerical approximations of these travelling waves by using a Fourier spectral discretization of the corresponding 1D travelling wave equations and a Newton-type iteration.

Citation: José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030
References:
[1]

U. M. AsherS. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823.

[2]

C. Canuto, M. Y. Hussaini and A. Quarteroni, Spectral Methods in Fluid Dynamics Series in Computational Physics, 1988, Springer, Berlin.

[3]

G. E. KarniadakisM. Israeli and S. A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), 414-443.

[4]

T. Kato, Quasilinear equations of evolution with applications to partial differential equations, Proceedings of the symposium at Dundee, Lecture Notes in Mathematics, 448, Springer, (1975), 25-70.

[5]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Mathematica, 28 (1979), 89-99.

[6]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in Applied Mathematics, Advances in Mathematics, Supplementary Studies, 8, Academic Press, (1983), 92-128.

[7]

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323.

[8]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body problem 2nd ed. Applied Mathematical Sciences, vol. 90,2009, Springer-Verlag.

[9]

P. A. Milewski and J. B. Keller, Three dimensional water waves, Studies Appl. Math., 37 (1996), 149-166.

[10]

L. Paumond, A rigorous link between KP and a Benney-Luke Equation, Diff. Int. Eq., 16 (2003), 1039-1064.

[11]

J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Part. Diff. Eqs., 23 (2010), 251-280.

[12]

J. Quintero, The Cauchy problem and stability of solitary waves for a 2D Boussinesq-KdV type system, Diff. Int. Eqs., 21 (2011), 325-360.

[13]

J. Quintero, From periodic travelling waves to solitons of a 2D water wave system, Meth. Appl. Anal., 21 (2014), 241-264.

[14]

J. Quintero, A water wave mixed type problem: existence of periodic travelling waves for a 2D Boussinesq system, Rev. Academia Colombiana de Ciencias Naturales, Físicas y Exactas., 38 (2015), 6-17.

[15]

J. R. Quintero and R. L. Pego, Two-dimensional solitary waves for a Benney-Luke equation, Physica D., 45 (1999), 476-496.

[16]

J. G. VerwerJ. G. Blom and W. Hundsdorfer, An implicit-explicit approach for atmospheric transport-chemistry problems, Applied Numerical Mathematics, 20 (1996), 191-209.

[17]

G. B. Whitham, Linear and Nonlinear Waves Wiley-Interscience, 1974.

show all references

References:
[1]

U. M. AsherS. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797-823.

[2]

C. Canuto, M. Y. Hussaini and A. Quarteroni, Spectral Methods in Fluid Dynamics Series in Computational Physics, 1988, Springer, Berlin.

[3]

G. E. KarniadakisM. Israeli and S. A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), 414-443.

[4]

T. Kato, Quasilinear equations of evolution with applications to partial differential equations, Proceedings of the symposium at Dundee, Lecture Notes in Mathematics, 448, Springer, (1975), 25-70.

[5]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Mathematica, 28 (1979), 89-99.

[6]

T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in Applied Mathematics, Advances in Mathematics, Supplementary Studies, 8, Academic Press, (1983), 92-128.

[7]

J. Kim and P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323.

[8]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body problem 2nd ed. Applied Mathematical Sciences, vol. 90,2009, Springer-Verlag.

[9]

P. A. Milewski and J. B. Keller, Three dimensional water waves, Studies Appl. Math., 37 (1996), 149-166.

[10]

L. Paumond, A rigorous link between KP and a Benney-Luke Equation, Diff. Int. Eq., 16 (2003), 1039-1064.

[11]

J. Quintero, Solitary water waves for a 2D Boussinesq type system, J. Part. Diff. Eqs., 23 (2010), 251-280.

[12]

J. Quintero, The Cauchy problem and stability of solitary waves for a 2D Boussinesq-KdV type system, Diff. Int. Eqs., 21 (2011), 325-360.

[13]

J. Quintero, From periodic travelling waves to solitons of a 2D water wave system, Meth. Appl. Anal., 21 (2014), 241-264.

[14]

J. Quintero, A water wave mixed type problem: existence of periodic travelling waves for a 2D Boussinesq system, Rev. Academia Colombiana de Ciencias Naturales, Físicas y Exactas., 38 (2015), 6-17.

[15]

J. R. Quintero and R. L. Pego, Two-dimensional solitary waves for a Benney-Luke equation, Physica D., 45 (1999), 476-496.

[16]

J. G. VerwerJ. G. Blom and W. Hundsdorfer, An implicit-explicit approach for atmospheric transport-chemistry problems, Applied Numerical Mathematics, 20 (1996), 191-209.

[17]

G. B. Whitham, Linear and Nonlinear Waves Wiley-Interscience, 1974.

Figure 1.  Periodic travelling wave solution $(\eta,\varphi)$ of system (36)-(37) with $p = 1$, $\sigma = 0.52$, $\epsilon = \mu = 0.01$, $\beta = 50$, $\nu = 0.093$, $\gamma = 4.44$, $\rho = 0.02$, $\beta_1 = 0.01$, $\beta_2 = 1$, $\beta_3 = 2.59$, $c_0 = 1.2$, wave speed $c = 48.81$ and period $T = 91.7$, obtained after 6 Newton's iterations. In solid line is the numerical simulation at $t = 10$ obtained with the scheme (63)-(64) and in points is the travelling wave computed with the Newton's procedure translated a distance of $10 c$
Figure 2.  Periodic travelling wave solution $(\eta,\varphi)$ of system (36)-(37) with $p = 1$, $\sigma = 2$, $\epsilon = \mu = 0.01$, $\beta = 15$, $\nu = 0.093$, $\gamma = 4.44$, $\rho = 0.067$, $\beta_1 = 0.01$, $\beta_2 = 1$, $\beta_3 = 2.59$, $c_0 = 1.2$, wave speed $c = 13.83$ and period $T = 45.15$, obtained after 7 Newton's iterations. In solid line is the numerical simulation at $t = 10$ obtained with the scheme (63)-(64) and in points is the travelling wave computed with the Newton's procedure translated a distance of $10 c$
Figure 3.  Surface plot of the wave elevation $\tilde{\eta}(x,y,t) = \eta(x+\beta y,t)$ in the original system (35) at $t = 0$, with the parameters used in Figure 1
Figure 4.  Surface plot of the wave elevation $\tilde{\eta}(x,y,t) = \eta(x+\beta y,t)$ in the original system (35) at $t = 0$, with the parameters used in Figure 2
Figure 5.  Periodic solution $(\zeta,u)$ of system (53)-(54) with $p = 1$, $\sigma = 1$, $\epsilon = \mu = 0.1$, $\beta = 15$, wave speed $c = 30$ and period $T_0 =52.83$, obtained after 18 Newton's iterations. Observe that this solution satisfies the condition on the wave speed $c^2 > 1+ \beta^2$ as required in Theorem 3.2
Figure 6.  Periodic solution $(\zeta,u)$ of system (53)-(54) with $p = 1$, $\sigma = 1$, $\epsilon = \mu = 0.1$, $\beta = 15$, $b = -0.1482$, wave speed $c = 20$ and period $T_+(1) =31.4879$, obtained after 12 Newton's iterations. Observe that this solution satisfies the condition on the wave speed $c^2 > 1+ \beta^2$ as required in Theorem 3.3
[1]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[2]

Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i

[3]

Peter Giesl, Sigurdur Hafstein. Review on computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2291-2331. doi: 10.3934/dcdsb.2015.20.2291

[4]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[5]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[6]

Sergio Grillo, Leandro Salomone, Marcela Zuccalli. On the relationship between the energy shaping and the Lyapunov constraint based methods. Journal of Geometric Mechanics, 2017, 9 (4) : 459-486. doi: 10.3934/jgm.2017018

[7]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[8]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[9]

Michał Jóźwikowski, Mikołaj Rotkiewicz. Bundle-theoretic methods for higher-order variational calculus. Journal of Geometric Mechanics, 2014, 6 (1) : 99-120. doi: 10.3934/jgm.2014.6.99

[10]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim, Dae-Woon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 61-68. doi: 10.3934/amc.2010.4.61

[11]

Zhong Wan, Chaoming Hu, Zhanlu Yang. A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1157-1169. doi: 10.3934/dcdsb.2011.16.1157

[12]

Zhong-Qing Wang, Jing-Xia Wu. Generalized Jacobi rational spectral methods with essential imposition of Neumann boundary conditions in unbounded domains. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 325-346. doi: 10.3934/dcdsb.2012.17.325

[13]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 387-397. doi: 10.3934/naco.2018024

[14]

Suna Ma, Huiyuan Li, Zhimin Zhang. Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-27. doi: 10.3934/dcdsb.2018221

[15]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[16]

Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51

[17]

Zaihui Gan. Cross-constrained variational methods for the nonlinear Klein-Gordon equations with an inverse square potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1541-1554. doi: 10.3934/cpaa.2009.8.1541

[18]

Andrey Gogolev, Ali Tahzibi. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics, 2014, 8 (3&4) : 549-576. doi: 10.3934/jmd.2014.8.549

[19]

Matthew H. Chan, Peter S. Kim, Robert Marangell. Stability of travelling waves in a Wolbachia invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 609-628. doi: 10.3934/dcdsb.2018036

[20]

Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : i-ii. doi: 10.3934/mbe.201606i

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (21)
  • HTML views (130)
  • Cited by (0)

[Back to Top]