# American Institute of Mathematical Sciences

January  2017, 16(1): 295-310. doi: 10.3934/cpaa.2017014

## The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term

 1 College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, China 2 Department of Mathematics, University of Iowa Iowa, City, IA 52242, USA

Lihui Guo, E-mail address: lihguo@126.com

Received  May 2016 Revised  July 2016 Published  November 2016

Fund Project: This work is partially supported by National Natural Science Foundation of China (11401508,11461066), China Scholarship Council, the Scientific Research Program of the Higher Education Institution of XinJiang (XJEDU2014I001)

We study the vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. The phenomena of concentration and cavitation to Chaplygin gas equations with a friction term are identified and analyzed as the pressure vanishes. Due to the influence of source term, the Riemann solutions are no longer self-similar. When the pressure vanishes, the Riemann solutions to the inhomogeneous Chaplygin gas equations converge to the Riemann solutions to the pressureless gas dynamics model with a friction term.

Citation: Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure & Applied Analysis, 2017, 16 (1) : 295-310. doi: 10.3934/cpaa.2017014
##### References:

show all references

##### References:
Riemann solution in the phase plane
Riemann solution when $(u_+, \rho_+)\in \rm{Ⅳ}(u_-, \rho_-).$
Riemann solution when $(u_+, \rho_+)\in \rm{Ⅰ}(u_-, \rho_-).$
Riemann solution when $(u_+, \rho_+)\in \rm{Ⅲ}(u_-, \rho_-).$
Riemann solution when $(u_+, \rho_+)\in \rm{Ⅱ}(u_-, \rho_-).$
 [1] Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041 [2] Jianjun Chen, Wancheng Sheng. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2018, 17 (1) : 127-142. doi: 10.3934/cpaa.2018008 [3] Geng Lai, Wancheng Sheng, Yuxi Zheng. Simple waves and pressure delta waves for a Chaplygin gas in two-dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 489-523. doi: 10.3934/dcds.2011.31.489 [4] Lihui Guo, Wancheng Sheng, Tong Zhang. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure & Applied Analysis, 2010, 9 (2) : 431-458. doi: 10.3934/cpaa.2010.9.431 [5] Qin Wang, Kyungwoo Song. The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1661-1675. doi: 10.3934/dcds.2016.36.1661 [6] Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733 [7] G. A. Braga, Frederico Furtado, Vincenzo Isaia. Renormalization group calculation of asymptotically self-similar dynamics. Conference Publications, 2005, 2005 (Special) : 131-141. doi: 10.3934/proc.2005.2005.131 [8] Marko Nedeljkov, Sanja Ružičić. On the uniqueness of solution to generalized Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4439-4460. doi: 10.3934/dcds.2017190 [9] Hideo Kubo, Kotaro Tsugawa. Global solutions and self-similar solutions of the coupled system of semilinear wave equations in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 471-482. doi: 10.3934/dcds.2003.9.471 [10] Weronika Biedrzycka, Marta Tyran-Kamińska. Self-similar solutions of fragmentation equations revisited. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 13-27. doi: 10.3934/dcdsb.2018002 [11] Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801 [12] Adrien Blanchet, Philippe Laurençot. Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 47-60. doi: 10.3934/cpaa.2012.11.47 [13] Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785 [14] Weixia Zhao. The expansion of gas from a wedge with small angle into a vacuum. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2319-2330. doi: 10.3934/cpaa.2013.12.2319 [15] Syed M. Assad, Chjan C. Lim. Statistical equilibrium of the Coulomb/vortex gas on the unbounded 2-dimensional plane. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 1-14. doi: 10.3934/dcdsb.2005.5.1 [16] Steinar Evje, Kenneth Hvistendahl Karlsen. Global weak solutions for a viscous liquid-gas model with singular pressure law. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1867-1894. doi: 10.3934/cpaa.2009.8.1867 [17] Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255 [18] Meixiang Huang, Zhi-Qiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure & Applied Analysis, 2016, 15 (1) : 127-138. doi: 10.3934/cpaa.2016.15.127 [19] Rostislav Grigorchuk, Volodymyr Nekrashevych. Self-similar groups, operator algebras and Schur complement. Journal of Modern Dynamics, 2007, 1 (3) : 323-370. doi: 10.3934/jmd.2007.1.323 [20] Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

2018 Impact Factor: 0.925