# American Institute of Mathematical Sciences

November  2016, 15(6): 1975-2005. doi: 10.3934/cpaa.2016024

## Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities

 1 Instituto de Investigaciones Matemáticas Luis Santaló and CONICET, Facultad de Ciencias Exactas y Naturales, Pabellón I, Ciudad Universitaria, 1428, Argentina

Received  November 2012 Revised  May 2013 Published  September 2016

In this paper we analyze the following elliptic problem related to some Caffarelli-Kohn-Nirenberg inequalities: \begin{eqnarray} -div(|x|^{-2\gamma}\nabla u)-\lambda \frac{u}{|x|^{2(\gamma+1)}}=|\nabla u|^p|x|^{-\gamma p}+cf,\; u>0\; \mbox{ in }\; \Omega, \qquad u_{|\partial \Omega}\equiv0, \end{eqnarray} where $\Omega \subset R^N$ is a domain such that $0\in\Omega$, $N\geq 3$, and $c, \lambda, \gamma, p$ are positive constants verifying $0 < \lambda \leq \Lambda_{N,\gamma}=\left(\frac{N-2(\gamma+1)}{2}\right)^{2}$, $-\infty<\gamma<\frac{N-2} 2$ and $p>0$. Our study concerns to existence of solutions to the former problem. More precisely, first we determine a critical thereshold for the power $p$, in the sense that, beyond this value it does not exist any positive supersolution to our problem, not even in a very weak sense. In addition, we show existence of solutions for all the values $p>0$ below this threshold, with the restriction $\gamma>-\frac{N(1-p)+2}{2}$, whenever the righthand side verifies $f(x)\leq |x|^{-2(\gamma+1)}$ if $\gamma>-1$. When $-\frac{N(1-p)+2}{2}<\gamma\leq -1$ it suffices that $f\in L^{2/p}(\Omega)$. The existence of solutions for $0 < p < 1$ and $\gamma\leq -\frac{N(1-p)+2}{2}$ is an open question.
Citation: Mayte Pérez-Llanos. Optimal power for an elliptic equation related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2016, 15 (6) : 1975-2005. doi: 10.3934/cpaa.2016024
##### References:
 [1] B. Abdellaoui, E. Colorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities,, \emph{Calc. Var. Partial Differential Equations}, 23 (2005), 327. doi: 10.1007/s00526-004-0303-8. Google Scholar [2] B. Abdellaoui and I. Peral, Some results for semilinear elliptic equations with critical potential,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 132 (2002), 1. doi: 10.1017/S0308210500001505. Google Scholar [3] B. Abdellaoui and I. Peral, On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities,, \emph{Commun. Pure Appl. Anal.}, 2 (2003), 539. doi: 10.3934/cpaa.2003.2.539. Google Scholar [4] B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian with a critical potential,, \emph{Ann. Mat. Pura Appl.}, 2 (2003), 247. doi: 10.1007/s10231-002-0064-y. Google Scholar [5] B. Abdellaoui and I. Peral, The equation $-\Delta u-\lambda\frac{u}{|x|^2}=|\nabla u| ^p+cf(x)$: the optimal power,, \emph{Ann. Sc. Norm. Super. Pisa Cl. Sci.}, 6 (2007), 159. Google Scholar [6] N. E. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations with data measures,, \emph{SIAM J. Math. Anal.}, 24 (1993), 23. doi: 10.1137/0524002. Google Scholar [7] W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications,, \emph{Nonlinear Anal.}, 32 (1998), 819. doi: 10.1016/S0362-546X(97)00530-0. Google Scholar [8] L. Boccardo, F. Murat and J. P. Puel, Rèsultats d'existence pour certains problèmes elliptiques quasilinéaires,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 11 (1984), 213. Google Scholar [9] L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential,, \emph{Discrete Contin. Dyn. Syst.}, 16 (2006), 513. doi: 10.3934/dcds.2006.16.513. Google Scholar [10] H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions,, \emph{Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat.}, 1 (1998), 223. Google Scholar [11] H. Brezis, L. Dupaigne and A. Tesei, On a semilinear elliptic equation with inverse-square potential,, \emph{Selecta Math. (N.S.)}, 11 (2005), 1. doi: 10.1007/s00029-005-0003-z. Google Scholar [12] H. Brezis and A. C. Ponce, Kato's inequality when $\Delta u$ is a measure,, \emph{C. R. Math. Acad. Sci. Paris}, 338 (2004), 599. doi: 10.1016/j.crma.2003.12.032. Google Scholar [13] L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, \emph{Compositio Math.}, 53 (1984), 259. Google Scholar [14] F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,, \emph{Comm. Pure Appl. Math.}, 54 (2001), 229. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. Google Scholar [15] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Oxford University Press, (1993). Google Scholar [16] T. Kato, Schrödinger operators with singular potentials,, \emph{Israel J. Math.}, 13 (1972), 135. Google Scholar [17] A. Kufner, Weighted Sobolev spaces,, John Wiley and Sons, (1985). Google Scholar [18] J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations,, Mathematical Surveys and Monographs, 51 (1997). doi: 10.1090/surv/051. Google Scholar [19] A. Porretta, Elliptic Equations with First Order Terms,, Notes of the course at Alexandria, (2009). Google Scholar [20] G. Stampacchia, Le problème de Dirichlet pour les èquations elliptiques du second ordre à coefficients discontinus,, \emph{Ann. Inst. Fourier (Grenoble)}, 15 (1965), 189. Google Scholar [21] C. A. Swanson, Remarks on Picone's identity and related identities,, \emph{Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia}, 11 (): 3. Google Scholar

show all references

##### References:
 [1] B. Abdellaoui, E. Colorado and I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities,, \emph{Calc. Var. Partial Differential Equations}, 23 (2005), 327. doi: 10.1007/s00526-004-0303-8. Google Scholar [2] B. Abdellaoui and I. Peral, Some results for semilinear elliptic equations with critical potential,, \emph{Proc. Roy. Soc. Edinburgh Sect. A}, 132 (2002), 1. doi: 10.1017/S0308210500001505. Google Scholar [3] B. Abdellaoui and I. Peral, On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities,, \emph{Commun. Pure Appl. Anal.}, 2 (2003), 539. doi: 10.3934/cpaa.2003.2.539. Google Scholar [4] B. Abdellaoui and I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian with a critical potential,, \emph{Ann. Mat. Pura Appl.}, 2 (2003), 247. doi: 10.1007/s10231-002-0064-y. Google Scholar [5] B. Abdellaoui and I. Peral, The equation $-\Delta u-\lambda\frac{u}{|x|^2}=|\nabla u| ^p+cf(x)$: the optimal power,, \emph{Ann. Sc. Norm. Super. Pisa Cl. Sci.}, 6 (2007), 159. Google Scholar [6] N. E. Alaa and M. Pierre, Weak solutions of some quasilinear elliptic equations with data measures,, \emph{SIAM J. Math. Anal.}, 24 (1993), 23. doi: 10.1137/0524002. Google Scholar [7] W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Laplacian and applications,, \emph{Nonlinear Anal.}, 32 (1998), 819. doi: 10.1016/S0362-546X(97)00530-0. Google Scholar [8] L. Boccardo, F. Murat and J. P. Puel, Rèsultats d'existence pour certains problèmes elliptiques quasilinéaires,, \emph{Ann. Scuola Norm. Sup. Pisa Cl. Sci.}, 11 (1984), 213. Google Scholar [9] L. Boccardo, L. Orsina and I. Peral, A remark on existence and optimal summability of solutions of elliptic problems involving Hardy potential,, \emph{Discrete Contin. Dyn. Syst.}, 16 (2006), 513. doi: 10.3934/dcds.2006.16.513. Google Scholar [10] H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions,, \emph{Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat.}, 1 (1998), 223. Google Scholar [11] H. Brezis, L. Dupaigne and A. Tesei, On a semilinear elliptic equation with inverse-square potential,, \emph{Selecta Math. (N.S.)}, 11 (2005), 1. doi: 10.1007/s00029-005-0003-z. Google Scholar [12] H. Brezis and A. C. Ponce, Kato's inequality when $\Delta u$ is a measure,, \emph{C. R. Math. Acad. Sci. Paris}, 338 (2004), 599. doi: 10.1016/j.crma.2003.12.032. Google Scholar [13] L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights,, \emph{Compositio Math.}, 53 (1984), 259. Google Scholar [14] F. Catrina and Z. Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions,, \emph{Comm. Pure Appl. Math.}, 54 (2001), 229. doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. Google Scholar [15] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Oxford University Press, (1993). Google Scholar [16] T. Kato, Schrödinger operators with singular potentials,, \emph{Israel J. Math.}, 13 (1972), 135. Google Scholar [17] A. Kufner, Weighted Sobolev spaces,, John Wiley and Sons, (1985). Google Scholar [18] J. Malý and W. P. Ziemer, Fine Regularity of Solutions of Elliptic Partial Differential Equations,, Mathematical Surveys and Monographs, 51 (1997). doi: 10.1090/surv/051. Google Scholar [19] A. Porretta, Elliptic Equations with First Order Terms,, Notes of the course at Alexandria, (2009). Google Scholar [20] G. Stampacchia, Le problème de Dirichlet pour les èquations elliptiques du second ordre à coefficients discontinus,, \emph{Ann. Inst. Fourier (Grenoble)}, 15 (1965), 189. Google Scholar [21] C. A. Swanson, Remarks on Picone's identity and related identities,, \emph{Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia}, 11 (): 3. Google Scholar
 [1] B. Abdellaoui, I. Peral. On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities. Communications on Pure & Applied Analysis, 2003, 2 (4) : 539-566. doi: 10.3934/cpaa.2003.2.539 [2] Pablo L. De Nápoli, Irene Drelichman, Ricardo G. Durán. Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1629-1642. doi: 10.3934/cpaa.2012.11.1629 [3] Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅰ): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic & Related Models, 2017, 10 (1) : 33-59. doi: 10.3934/krm.2017002 [4] Mateus Balbino Guimarães, Rodrigo da Silva Rodrigues. Elliptic equations involving linear and superlinear terms and critical Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2697-2713. doi: 10.3934/cpaa.2013.12.2697 [5] Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987 [6] Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565 [7] Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951 [8] Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427 [9] Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164 [10] Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935 [11] José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138 [12] Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791 [13] Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018 [14] Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171 [15] Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033 [16] Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 [17] Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011 [18] Chérif Amrouche, Mohamed Meslameni, Šárka Nečasová. Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 901-916. doi: 10.3934/dcdss.2014.7.901 [19] G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327 [20] Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

2018 Impact Factor: 0.925