2016, 15(5): 1893-1913. doi: 10.3934/cpaa.2016021

Global attractors for nonlinear viscoelastic equations with memory

1. 

Dipartimento di Matematica "F.Brioschi", Politecnico di Milano, I-20133 Milano

2. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy

Published  July 2016

We study the asymptotic properties of the semigroup $S(t)$ arising from the nonlinear viscoelastic equation with hereditary memory on a bounded three-dimensional domain \begin{eqnarray} |\partial_t u|^\rho \partial_{t t} u-\Delta \partial_{t t} u-\Delta \partial_t u\\ -\Big(1+\int_0^\infty \mu(s)\Delta s \Big)\Delta u +\int_0^\infty \mu(s)\Delta u(t-s)\Delta s +f(u)=h \end{eqnarray} written in the past history framework of Dafermos [10]. We establish the existence of the global attractor of optimal regularity for $S(t)$ when $\rho\in [0,4)$ and $f$ has polynomial growth of (at most) critical order 5.
Citation: Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021
References:
[1]

R. O. Araujo, T. F. Ma and Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history,, \emph{J. Differential Equations}, 254 (2013), 4066. doi: 10.1016/j.jde.2013.02.010.

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).

[3]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping,, \emph{Math. Methods Appl. Sci.}, 24 (2001), 1043. doi: 10.1002/mma.250.

[4]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford University Press, (1998).

[5]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, \emph{Asymptot. Anal.}, 46 (2006), 251.

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, Amer. Math. Soc., (2002).

[7]

M. Conti, E. M. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory,, \emph{Nonlinear Anal.}, 94 (2014), 206. doi: 10.1016/j.na.2013.08.015.

[8]

M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity,, \emph{Commun. Pure Appl. Anal.}, 4 (2005), 705. doi: 10.3934/cpaa.2005.4.705.

[9]

M. Conti and V. Pata, On the regularity of global attractors,, \emph{Discrete Contin. Dyn. Syst.}, 25 (2009), 1209. doi: 10.3934/dcds.2009.25.1209.

[10]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, \emph{Arch. Ration. Mech. Anal.}, 37 (1970), 297.

[11]

S. Gatti, A. Miranville, V. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation,, \emph{Rocky Mountain J. Math.}, 38 (2008), 1117. doi: 10.1216/RMJ-2008-38-4-1117.

[12]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory,, in \emph{Evolution Equations, (2002), 155.

[13]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Amer. Math. Soc., (1988).

[14]

X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping,, \emph{Math. Methods Appl. Sci.}, 32 (2009), 346. doi: 10.1002/mma.1041.

[15]

X. Han and M. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping,, \emph{Nonlinear Anal.}, 70 (2009), 3090. doi: 10.1016/j.na.2008.04.011.

[16]

A. Haraux, Systèmes dynamiques dissipatifs et applications,, Masson, (1991).

[17]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity,, \emph{Calc. Var. Partial Differential Equations}, 9 (1999), 95. doi: 10.1007/s005260050133.

[18]

W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations,, \emph{Nonlinear Anal.}, 71 (2009), 2257. doi: 10.1016/j.na.2009.01.060.

[19]

W. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source,, \emph{Nonlinear Anal.}, 73 (2010), 1890. doi: 10.1016/j.na.2010.05.023.

[20]

A. H. Love, A Treatise on Mathematical Theory of Elasticity,, Dover, (1944).

[21]

S. A. Messaoudi and M. I. Mustafa, A general stability result for a quasilinear wave equation with memory,, \emph{Nonlinear Anal. Real World Appl.}, 14 (2013), 1854. doi: 10.1016/j.nonrwa.2012.12.002.

[22]

S. A. Messaoudi and N. -e. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem,, \emph{Math. Methods Appl. Sci.}, 30 (2007), 665. doi: 10.1002/mma.804.

[23]

S. A. Messaoudi and N. -e. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation,, \emph{Nonlinear Anal.}, 68 (2008), 785. doi: 10.1016/j.na.2006.11.036.

[24]

S. A. Messaoudi and N. -e. Tatar, Exponential decay for a quasilinear viscoelastic equation,, \emph{Math. Nachr.}, 282 (2009), 1443. doi: 10.1002/mana.200610800.

[25]

J. Y. Park and S. H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping,, \emph{J. Math. Phys.}, 50 (2009). doi: 10.1063/1.3187780.

[26]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory,, \emph{Adv. Math. Sci. Appl.}, 11 (2001), 505.

[27]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer, (1988). doi: 10.1007/978-1-4684-0313-8.

[28]

S. -T. Wu, Arbitrary decays for a viscoelastic equation,, \emph{Bound. Value Probl.}, 28 (2011).

show all references

References:
[1]

R. O. Araujo, T. F. Ma and Y. Qin, Long-time behavior of a quasilinear viscoelastic equation with past history,, \emph{J. Differential Equations}, 254 (2013), 4066. doi: 10.1016/j.jde.2013.02.010.

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).

[3]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping,, \emph{Math. Methods Appl. Sci.}, 24 (2001), 1043. doi: 10.1002/mma.250.

[4]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford University Press, (1998).

[5]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, \emph{Asymptot. Anal.}, 46 (2006), 251.

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, Amer. Math. Soc., (2002).

[7]

M. Conti, E. M. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory,, \emph{Nonlinear Anal.}, 94 (2014), 206. doi: 10.1016/j.na.2013.08.015.

[8]

M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity,, \emph{Commun. Pure Appl. Anal.}, 4 (2005), 705. doi: 10.3934/cpaa.2005.4.705.

[9]

M. Conti and V. Pata, On the regularity of global attractors,, \emph{Discrete Contin. Dyn. Syst.}, 25 (2009), 1209. doi: 10.3934/dcds.2009.25.1209.

[10]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, \emph{Arch. Ration. Mech. Anal.}, 37 (1970), 297.

[11]

S. Gatti, A. Miranville, V. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation,, \emph{Rocky Mountain J. Math.}, 38 (2008), 1117. doi: 10.1216/RMJ-2008-38-4-1117.

[12]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous dynamical systems with memory,, in \emph{Evolution Equations, (2002), 155.

[13]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Amer. Math. Soc., (1988).

[14]

X. Han and M. Wang, General decay of energy for a viscoelastic equation with nonlinear damping,, \emph{Math. Methods Appl. Sci.}, 32 (2009), 346. doi: 10.1002/mma.1041.

[15]

X. Han and M. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping,, \emph{Nonlinear Anal.}, 70 (2009), 3090. doi: 10.1016/j.na.2008.04.011.

[16]

A. Haraux, Systèmes dynamiques dissipatifs et applications,, Masson, (1991).

[17]

A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity,, \emph{Calc. Var. Partial Differential Equations}, 9 (1999), 95. doi: 10.1007/s005260050133.

[18]

W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations,, \emph{Nonlinear Anal.}, 71 (2009), 2257. doi: 10.1016/j.na.2009.01.060.

[19]

W. Liu, General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source,, \emph{Nonlinear Anal.}, 73 (2010), 1890. doi: 10.1016/j.na.2010.05.023.

[20]

A. H. Love, A Treatise on Mathematical Theory of Elasticity,, Dover, (1944).

[21]

S. A. Messaoudi and M. I. Mustafa, A general stability result for a quasilinear wave equation with memory,, \emph{Nonlinear Anal. Real World Appl.}, 14 (2013), 1854. doi: 10.1016/j.nonrwa.2012.12.002.

[22]

S. A. Messaoudi and N. -e. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem,, \emph{Math. Methods Appl. Sci.}, 30 (2007), 665. doi: 10.1002/mma.804.

[23]

S. A. Messaoudi and N. -e. Tatar, Exponential and polynomial decay for a quasilinear viscoelastic equation,, \emph{Nonlinear Anal.}, 68 (2008), 785. doi: 10.1016/j.na.2006.11.036.

[24]

S. A. Messaoudi and N. -e. Tatar, Exponential decay for a quasilinear viscoelastic equation,, \emph{Math. Nachr.}, 282 (2009), 1443. doi: 10.1002/mana.200610800.

[25]

J. Y. Park and S. H. Park, General decay for quasilinear viscoelastic equations with nonlinear weak damping,, \emph{J. Math. Phys.}, 50 (2009). doi: 10.1063/1.3187780.

[26]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory,, \emph{Adv. Math. Sci. Appl.}, 11 (2001), 505.

[27]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Springer, (1988). doi: 10.1007/978-1-4684-0313-8.

[28]

S. -T. Wu, Arbitrary decays for a viscoelastic equation,, \emph{Bound. Value Probl.}, 28 (2011).

[1]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[2]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[3]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

[4]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[5]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[6]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

[7]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[8]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[9]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[10]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[11]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[12]

J. W. Neuberger. How to distinguish a local semigroup from a global semigroup. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5293-5303. doi: 10.3934/dcds.2013.33.5293

[13]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[14]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[15]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[16]

Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597

[17]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[18]

Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104

[19]

Ming Wang. Global attractor for weakly damped gKdV equations in higher sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3799-3825. doi: 10.3934/dcds.2015.35.3799

[20]

Jana Kopfová. Nonlinear semigroup methods in problems with hysteresis. Conference Publications, 2007, 2007 (Special) : 580-589. doi: 10.3934/proc.2007.2007.580

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]