2016, 15(2): 577-598. doi: 10.3934/cpaa.2016.15.577

Center problem for systems with two monomial nonlinearities

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193-Bellaterra

2. 

Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida

3. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona

Received  August 2015 Revised  December 2015 Published  January 2016

We study the center problem for planar systems with a linear center at the origin that in complex coordinates have a nonlinearity formed by the sum of two monomials. Our first result lists several centers inside this family. To the best of our knowledge this list includes a new class of Darboux centers that are also persistent centers. The rest of the paper is dedicated to try to prove that the given list is exhaustive. We get several partial results that seem to indicate that this is the case. In particular, we solve the question for several general families with arbitrary high degree and for all cases of degree less or equal than 19. As a byproduct of our study we also obtain the highest known order for weak-foci of planar polynomial systems of some given degrees.
Citation: Armengol Gasull, Jaume Giné, Joan Torregrosa. Center problem for systems with two monomial nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 577-598. doi: 10.3934/cpaa.2016.15.577
References:
[1]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maĭer, Theory of Bifurcations of Dynamic Systems on a Plane,, Halsted Press [A division of John Wiley & Sons], (1973).

[2]

J. Bai and Y. Liu, A class of planar degree $n$ (even number) polynomial systems with a fine focus of order $n^2-n$,, \emph{Chinese Sci. Bull.}, 12 (1992), 1063.

[3]

A. Cima, A. Gasull, V. Mañosa and F. Mañosas, Algebraic properties of the Liapunov and period constants,, \emph{Rocky Mountain J. Math.}, 27 (1997), 471. doi: 10.1216/rmjm/1181071923.

[4]

A. Cima, A. Gasull and J. C. Medrado, On persistent centers,, \emph{Bull. Sci. Math.}, 133 (2009), 644. doi: 10.1016/j.bulsci.2008.08.007.

[5]

J. Devlin, Word problems related to derivatives of the displacement map,, \emph{Math. Proc. Cambridge Philos. Soc.}, 110 (1991), 569. doi: 10.1017/S0305004100070638.

[6]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Universitext, (2006).

[7]

J.-P. Françoise, Successive derivatives of a first return map, application to the study of quadratic vector fields,, \emph{Ergodic Theory Dynam. Systems}, 16 (1996), 87. doi: 10.1017/S0143385700008725.

[8]

A. Garijo, A. Gasull and X. Jarque, Normal forms for singularities of one dimensional holomorphic vector fields,, \emph{Electron. J. Differential Equations}, 2004 ().

[9]

A. Gasull, A. Guillamon and V. Mañosa, An explicit expression of the first Liapunov and period constants with applications,, \emph{J. Math. Anal. Appl.}, 211 (1997), 190. doi: 10.1006/jmaa.1997.5455.

[10]

A. Gasull and J. Torregrosa, A new approach to the computation of the Lyapunov constants,, \emph{Comput. Appl. Math.}, 20 (2001), 149.

[11]

J. Giné, The center problem for a linear center perturbed by homogeneous polynomials,, \emph{Acta Math. Sin. (Engl. Ser.)}, 22 (2006), 1613. doi: 10.1007/s10114-005-0623-4.

[12]

J. Giné and X. Santallusia, On the Poincaré-Lyapunov constants and the Poincaré series,, \emph{Appl. Math. (Warsaw)}, 28 (2001), 17. doi: 10.4064/am28-1-2.

[13]

J. Giné and X. Santallusia, Implementation of a new algorithm of computation of the Poincaré-Liapunov constants,, \emph{J. Comput. Appl. Math.}, 166 (2004), 465. doi: 10.1016/j.cam.2003.08.043.

[14]

Y. R. Liu and J. B. Li, Theory of values of singular point in complex autonomous differential systems,, \emph{Sci. China Ser. A}, 33 (1990), 10.

[15]

J. Llibre, Integrability of polynomial differential systems,, in \emph{Handbook of Differential Equations (Ordinary Differential Equations Volume I)}, (2004), 437.

[16]

J. Llibre and R. Rabanal, Planar real polynomial differential systems of degree $n>3$ having a weak focus of high order,, \emph{Rocky Mountain J. Math.}, 42 (2012), 657. doi: 10.1216/RMJ-2012-42-2-657.

[17]

J. Llibre and C. Valls, Centers for polynomial vector fields of arbitrary degree,, \emph{Commun. Pure Appl. Anal.}, 8 (2009), 725. doi: 10.3934/cpaa.2009.8.725.

[18]

N. G. Lloyd, J. M. Pearson and V. A. Romanovsky, Computing integrability conditions for a cubic differential system,, \emph{Comput. Math. Appl.}, 32 (1996), 99. doi: 10.1016/S0898-1221(96)00188-5.

[19]

A. M. Lyapunov, The general problem of the stability of motion,, Taylor & Francis, 5 (1907). doi: 10.1080/00207179208934253.

[20]

J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions,, \emph{SIAM Rev.}, 38 (1996), 619. doi: 10.1137/S0036144595283575.

[21]

H. Poincaré, Sur l'intégration des équations différentielles du premier ordre et du premier degré I,, \emph{Rend. Circ. Mat. Palermo}, 5 (1891), 161.

[22]

H. Poincaré, Sur l'intégration des équations différentielles du premier ordre et du premier degré {II},, \emph{Rend. Circ. Mat. Palermo}, 11 (1897), 193.

[23]

Y. Qiu and J. Yang, On the focus order of planar polynomial differential equations,, \emph{J. Differential Equations}, 246 (2009), 3361. doi: 10.1016/j.jde.2009.02.005.

[24]

V. G. Romanovskiĭ, Center conditions for a cubic system with four complex parameters,, \emph{Differentsial\cprime nye Uravneniya}, 31 (1995), 1091.

[25]

V. G. Romanovskiĭ and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach,, Birkh\, (2009). doi: 10.1007/978-0-8176-4727-8.

[26]

S. L. Shi, A method of constructing cycles without contact around a weak focus,, \emph{J. Differential Equations}, 41 (1981), 301. doi: 10.1016/0022-0396(81)90039-5.

[27]

H. Żoładek, Quadratic systems with center and their perturbations,, \emph{J. Differential Equations}, 109 (1994), 223. doi: 10.1006/jdeq.1994.1049.

show all references

References:
[1]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maĭer, Theory of Bifurcations of Dynamic Systems on a Plane,, Halsted Press [A division of John Wiley & Sons], (1973).

[2]

J. Bai and Y. Liu, A class of planar degree $n$ (even number) polynomial systems with a fine focus of order $n^2-n$,, \emph{Chinese Sci. Bull.}, 12 (1992), 1063.

[3]

A. Cima, A. Gasull, V. Mañosa and F. Mañosas, Algebraic properties of the Liapunov and period constants,, \emph{Rocky Mountain J. Math.}, 27 (1997), 471. doi: 10.1216/rmjm/1181071923.

[4]

A. Cima, A. Gasull and J. C. Medrado, On persistent centers,, \emph{Bull. Sci. Math.}, 133 (2009), 644. doi: 10.1016/j.bulsci.2008.08.007.

[5]

J. Devlin, Word problems related to derivatives of the displacement map,, \emph{Math. Proc. Cambridge Philos. Soc.}, 110 (1991), 569. doi: 10.1017/S0305004100070638.

[6]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Universitext, (2006).

[7]

J.-P. Françoise, Successive derivatives of a first return map, application to the study of quadratic vector fields,, \emph{Ergodic Theory Dynam. Systems}, 16 (1996), 87. doi: 10.1017/S0143385700008725.

[8]

A. Garijo, A. Gasull and X. Jarque, Normal forms for singularities of one dimensional holomorphic vector fields,, \emph{Electron. J. Differential Equations}, 2004 ().

[9]

A. Gasull, A. Guillamon and V. Mañosa, An explicit expression of the first Liapunov and period constants with applications,, \emph{J. Math. Anal. Appl.}, 211 (1997), 190. doi: 10.1006/jmaa.1997.5455.

[10]

A. Gasull and J. Torregrosa, A new approach to the computation of the Lyapunov constants,, \emph{Comput. Appl. Math.}, 20 (2001), 149.

[11]

J. Giné, The center problem for a linear center perturbed by homogeneous polynomials,, \emph{Acta Math. Sin. (Engl. Ser.)}, 22 (2006), 1613. doi: 10.1007/s10114-005-0623-4.

[12]

J. Giné and X. Santallusia, On the Poincaré-Lyapunov constants and the Poincaré series,, \emph{Appl. Math. (Warsaw)}, 28 (2001), 17. doi: 10.4064/am28-1-2.

[13]

J. Giné and X. Santallusia, Implementation of a new algorithm of computation of the Poincaré-Liapunov constants,, \emph{J. Comput. Appl. Math.}, 166 (2004), 465. doi: 10.1016/j.cam.2003.08.043.

[14]

Y. R. Liu and J. B. Li, Theory of values of singular point in complex autonomous differential systems,, \emph{Sci. China Ser. A}, 33 (1990), 10.

[15]

J. Llibre, Integrability of polynomial differential systems,, in \emph{Handbook of Differential Equations (Ordinary Differential Equations Volume I)}, (2004), 437.

[16]

J. Llibre and R. Rabanal, Planar real polynomial differential systems of degree $n>3$ having a weak focus of high order,, \emph{Rocky Mountain J. Math.}, 42 (2012), 657. doi: 10.1216/RMJ-2012-42-2-657.

[17]

J. Llibre and C. Valls, Centers for polynomial vector fields of arbitrary degree,, \emph{Commun. Pure Appl. Anal.}, 8 (2009), 725. doi: 10.3934/cpaa.2009.8.725.

[18]

N. G. Lloyd, J. M. Pearson and V. A. Romanovsky, Computing integrability conditions for a cubic differential system,, \emph{Comput. Math. Appl.}, 32 (1996), 99. doi: 10.1016/S0898-1221(96)00188-5.

[19]

A. M. Lyapunov, The general problem of the stability of motion,, Taylor & Francis, 5 (1907). doi: 10.1080/00207179208934253.

[20]

J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions,, \emph{SIAM Rev.}, 38 (1996), 619. doi: 10.1137/S0036144595283575.

[21]

H. Poincaré, Sur l'intégration des équations différentielles du premier ordre et du premier degré I,, \emph{Rend. Circ. Mat. Palermo}, 5 (1891), 161.

[22]

H. Poincaré, Sur l'intégration des équations différentielles du premier ordre et du premier degré {II},, \emph{Rend. Circ. Mat. Palermo}, 11 (1897), 193.

[23]

Y. Qiu and J. Yang, On the focus order of planar polynomial differential equations,, \emph{J. Differential Equations}, 246 (2009), 3361. doi: 10.1016/j.jde.2009.02.005.

[24]

V. G. Romanovskiĭ, Center conditions for a cubic system with four complex parameters,, \emph{Differentsial\cprime nye Uravneniya}, 31 (1995), 1091.

[25]

V. G. Romanovskiĭ and D. S. Shafer, The Center and Cyclicity Problems: A Computational Algebra Approach,, Birkh\, (2009). doi: 10.1007/978-0-8176-4727-8.

[26]

S. L. Shi, A method of constructing cycles without contact around a weak focus,, \emph{J. Differential Equations}, 41 (1981), 301. doi: 10.1016/0022-0396(81)90039-5.

[27]

H. Żoładek, Quadratic systems with center and their perturbations,, \emph{J. Differential Equations}, 109 (1994), 223. doi: 10.1006/jdeq.1994.1049.

[1]

Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51

[2]

Andrey Gogolev, Ali Tahzibi. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics, 2014, 8 (3&4) : 549-576. doi: 10.3934/jmd.2014.8.549

[3]

Keith Burns, Amie Wilkinson. Dynamical coherence and center bunching. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 89-100. doi: 10.3934/dcds.2008.22.89

[4]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[5]

Vitali Kapovitch, Anton Petrunin, Wilderich Tuschmann. On the torsion in the center conjecture. Electronic Research Announcements, 2018, 25: 27-35. doi: 10.3934/era.2018.25.004

[6]

Haihua Liang, Yulin Zhao. Quadratic perturbations of a class of quadratic reversible systems with one center. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 325-335. doi: 10.3934/dcds.2010.27.325

[7]

Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure & Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583

[8]

B. Coll, A. Gasull, R. Prohens. Center-focus and isochronous center problems for discontinuous differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 609-624. doi: 10.3934/dcds.2000.6.609

[9]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[10]

Claudio Buzzi, Claudio Pessoa, Joan Torregrosa. Piecewise linear perturbations of a linear center. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3915-3936. doi: 10.3934/dcds.2013.33.3915

[11]

Luis Barreira, Claudia Valls. Reversibility and equivariance in center manifolds of nonautonomous dynamics. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 677-699. doi: 10.3934/dcds.2007.18.677

[12]

Martin Golubitsky, Claire Postlethwaite. Feed-forward networks, center manifolds, and forcing. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2913-2935. doi: 10.3934/dcds.2012.32.2913

[13]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[14]

Luis Barreira, Claudia Valls. Center manifolds for nonuniform trichotomies and arbitrary growth rates. Communications on Pure & Applied Analysis, 2010, 9 (3) : 643-654. doi: 10.3934/cpaa.2010.9.643

[15]

Jean-Philippe Braeunig, Nicolas Crouseilles, Michel Mehrenberger, Eric Sonnendrücker. Guiding-center simulations on curvilinear meshes. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 271-282. doi: 10.3934/dcdss.2012.5.271

[16]

Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497

[17]

Stefano Bianchini, Alberto Bressan. A center manifold technique for tracing viscous waves. Communications on Pure & Applied Analysis, 2002, 1 (2) : 161-190. doi: 10.3934/cpaa.2002.1.161

[18]

Lin Wang, Yujun Zhu. Center specification property and entropy for partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 469-479. doi: 10.3934/dcds.2016.36.469

[19]

Andrey Gogolev. Partially hyperbolic diffeomorphisms with compact center foliations. Journal of Modern Dynamics, 2011, 5 (4) : 747-769. doi: 10.3934/jmd.2011.5.747

[20]

Lingling Liu, Bo Gao, Dongmei Xiao, Weinian Zhang. Identification of focus and center in a 3-dimensional system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 485-522. doi: 10.3934/dcdsb.2014.19.485

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]