2016, 15(2): 477-494. doi: 10.3934/cpaa.2016.15.477

One dimensional $p$-th power Newtonian fluid with temperature-dependent thermal conductivity

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072

Received  April 2015 Revised  November 2015 Published  January 2016

We study the initial and initial-boundary value problems for the $p$-th power Newtonian fluid in one space dimension with general large initial data. The existence and uniqueness of globally smooth non-vacuum solutions are established when the thermal conductivity is some non-negative power of the temperature. Our analysis is based on some detailed estimates on the bounds of both density and temperature.
Citation: Tao Wang. One dimensional $p$-th power Newtonian fluid with temperature-dependent thermal conductivity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 477-494. doi: 10.3934/cpaa.2016.15.477
References:
[1]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,, North-Holland Publishing Co., (1990).

[2]

S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases,, 3$^{rd}$ edition, (1990).

[3]

G. Q. Chen, Global solutions to the compressible Navier-Stokes equations for a reacting mixture,, \emph{SIAM J. Math. Anal.}, 23 (1992), 609. doi: 10.1137/0523031.

[4]

H. Cui and Z.-A. Yao, Asymptotic behavior of compressible $p$-th power Newtonian fluid with large initial data,, \emph{J. Differential Equations}, 258 (2015), 919. doi: 10.1016/j.jde.2014.10.011.

[5]

H. K. Jenssen and T. K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients,, \emph{SIAM J. Math. Anal.}, 42 (2010), 904. doi: 10.1137/090763135.

[6]

J. I. Kanel', A model system of equations for the one-dimensional motion of a gas,, \emph{Differencial$'$ nye Uravnenija}, 4 (1968), 721.

[7]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics,, \emph{Proc. Japan Acad. Ser. A Math. Sci.}, 58 (1982), 384.

[8]

A. V. Kazhikhov, On the Cauchy problem for the equations of a viscous gas,, \emph{Sibirsk. Mat. Zh.}, 23 (1982), 60.

[9]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, \emph{Prikl. Mat. Meh.}, 41 (1977), 282.

[10]

M. Lewicka and P. B. Mucha, On temporal asymptotics for the $p$th power viscous reactive gas,, \emph{Nonlinear Anal.}, 57 (2004), 951. doi: 10.1016/j.na.2003.12.001.

[11]

M. Lewicka and S. J. Watson, Temporal asymptotics for the $p$'th power Newtonian fluid in one space dimension,, \emph{Z. Angew. Math. Phys.}, 54 (2003), 633. doi: 10.1007/s00033-003-1149-1.

[12]

H. Liu, T. Yang, H. Zhao and Q. Zou, One-dimensional compressible Navier-Stokes equations with temperature dependent transport coefficients and large data,, \emph{SIAM J. Math. Anal.}, 46 (2014), 2185. doi: 10.1137/130920617.

[13]

R. Pan and W. Zhang, Compressible Navier-Stokes equations with temperature dependent heat conductivity,, \emph{Commun. Math. Sci.}, 13 (2015), 401. doi: 10.4310/CMS.2015.v13.n2.a7.

[14]

Y. Qin and L. Huang, Global existence and exponential stability for the $p$th power viscous reactive gas,, \emph{Nonlinear Anal.}, 73 (2010), 2800. doi: 10.1016/j.na.2010.06.015.

[15]

Y. Qin and L. Huang, Regularity and exponential stability of the $p$th Newtonian fluid in one space dimension,, \emph{Math. Models Methods Appl. Sci.}, 20 (2010), 589. doi: 10.1142/S0218202510004350.

[16]

Z. Tan, T. Yang, H. Zhao and Q. Zou, Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data,, \emph{SIAM J. Math. Anal.}, 45 (2013), 547. doi: 10.1137/120876174.

show all references

References:
[1]

S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,, North-Holland Publishing Co., (1990).

[2]

S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases,, 3$^{rd}$ edition, (1990).

[3]

G. Q. Chen, Global solutions to the compressible Navier-Stokes equations for a reacting mixture,, \emph{SIAM J. Math. Anal.}, 23 (1992), 609. doi: 10.1137/0523031.

[4]

H. Cui and Z.-A. Yao, Asymptotic behavior of compressible $p$-th power Newtonian fluid with large initial data,, \emph{J. Differential Equations}, 258 (2015), 919. doi: 10.1016/j.jde.2014.10.011.

[5]

H. K. Jenssen and T. K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients,, \emph{SIAM J. Math. Anal.}, 42 (2010), 904. doi: 10.1137/090763135.

[6]

J. I. Kanel', A model system of equations for the one-dimensional motion of a gas,, \emph{Differencial$'$ nye Uravnenija}, 4 (1968), 721.

[7]

S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics,, \emph{Proc. Japan Acad. Ser. A Math. Sci.}, 58 (1982), 384.

[8]

A. V. Kazhikhov, On the Cauchy problem for the equations of a viscous gas,, \emph{Sibirsk. Mat. Zh.}, 23 (1982), 60.

[9]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, \emph{Prikl. Mat. Meh.}, 41 (1977), 282.

[10]

M. Lewicka and P. B. Mucha, On temporal asymptotics for the $p$th power viscous reactive gas,, \emph{Nonlinear Anal.}, 57 (2004), 951. doi: 10.1016/j.na.2003.12.001.

[11]

M. Lewicka and S. J. Watson, Temporal asymptotics for the $p$'th power Newtonian fluid in one space dimension,, \emph{Z. Angew. Math. Phys.}, 54 (2003), 633. doi: 10.1007/s00033-003-1149-1.

[12]

H. Liu, T. Yang, H. Zhao and Q. Zou, One-dimensional compressible Navier-Stokes equations with temperature dependent transport coefficients and large data,, \emph{SIAM J. Math. Anal.}, 46 (2014), 2185. doi: 10.1137/130920617.

[13]

R. Pan and W. Zhang, Compressible Navier-Stokes equations with temperature dependent heat conductivity,, \emph{Commun. Math. Sci.}, 13 (2015), 401. doi: 10.4310/CMS.2015.v13.n2.a7.

[14]

Y. Qin and L. Huang, Global existence and exponential stability for the $p$th power viscous reactive gas,, \emph{Nonlinear Anal.}, 73 (2010), 2800. doi: 10.1016/j.na.2010.06.015.

[15]

Y. Qin and L. Huang, Regularity and exponential stability of the $p$th Newtonian fluid in one space dimension,, \emph{Math. Models Methods Appl. Sci.}, 20 (2010), 589. doi: 10.1142/S0218202510004350.

[16]

Z. Tan, T. Yang, H. Zhao and Q. Zou, Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data,, \emph{SIAM J. Math. Anal.}, 45 (2013), 547. doi: 10.1137/120876174.

[1]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[2]

Adriana C. Briozzo, María F. Natale, Domingo A. Tarzia. The Stefan problem with temperature-dependent thermal conductivity and a convective term with a convective condition at the fixed face. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1209-1220. doi: 10.3934/cpaa.2010.9.1209

[3]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[4]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[5]

Jishan Fan, Fucai Li, Gen Nakamura. Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4915-4923. doi: 10.3934/dcds.2016012

[6]

Jishan Fan, Shuxiang Huang, Fucai Li. Global strong solutions to the planar compressible magnetohydrodynamic equations with large initial data and vacuum. Kinetic & Related Models, 2017, 10 (4) : 1035-1053. doi: 10.3934/krm.2017041

[7]

Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122

[8]

Yaobin Ou, Pan Shi. Global classical solutions to the free boundary problem of planar full magnetohydrodynamic equations with large initial data. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 537-567. doi: 10.3934/dcdsb.2017026

[9]

P. D. Howell, J. J. Wylie, Huaxiong Huang, Robert M. Miura. Stretching of heated threads with temperature-dependent viscosity: Asymptotic analysis. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 553-572. doi: 10.3934/dcdsb.2007.7.553

[10]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018212

[11]

Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure & Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973

[12]

Fei Chen, Yongsheng Li, Huan Xu. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2945-2967. doi: 10.3934/dcds.2016.36.2945

[13]

Katrin Grunert, Helge Holden, Xavier Raynaud. Global conservative solutions to the Camassa--Holm equation for initial data with nonvanishing asymptotics. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4209-4227. doi: 10.3934/dcds.2012.32.4209

[14]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[15]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[16]

Zhi-Qiang Shao. Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonal form with large BV data. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2739-2752. doi: 10.3934/cpaa.2013.12.2739

[17]

María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure & Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313

[18]

María Teresa González Montesinos, Francisco Ortegón Gallego. The thermistor problem with degenerate thermal conductivity and metallic conduction. Conference Publications, 2007, 2007 (Special) : 446-455. doi: 10.3934/proc.2007.2007.446

[19]

Masataka Kato, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of energy-saving server scheduling on power consumption for large-scale data centers. Journal of Industrial & Management Optimization, 2016, 12 (2) : 667-685. doi: 10.3934/jimo.2016.12.667

[20]

Manil T. Mohan, Sivaguru S. Sritharan. $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data. Evolution Equations & Control Theory, 2017, 6 (3) : 409-425. doi: 10.3934/eect.2017021

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]