• Previous Article
    Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems
  • CPAA Home
  • This Issue
  • Next Article
    The lifespan of solutions to semilinear damped wave equations in one space dimension
July  2016, 15(4): 1251-1263. doi: 10.3934/cpaa.2016.15.1251

On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary

1. 

Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy

2. 

Dipartimento di Scienze Statistiche, Università di Padova, Via Cesare Battisti 141, 35121 Padova, Italy

3. 

Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, Via Trieste, 63 - 35121 Padova

Received  September 2015 Revised  January 2016 Published  April 2016

We derive the long time asymptotic of solutions to an evolutive Hamilton-Jacobi-Bellman equation in a bounded smooth domain, in connection with ergodic problems recently studied in [1]. Our main assumption is an appropriate degeneracy condition on the operator at the boundary. This condition is related to the characteristic boundary points for linear operators as well as to the irrelevant points for the generalized Dirichlet problem, and implies in particular that no boundary datum has to be imposed. We prove that there exists a constant $c$ such that the solutions of the evolutive problem converge uniformly, in the reference frame moving with constant velocity $c$, to a unique steady state solving a suitable ergodic problem.
Citation: Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251
References:
[1]

M. Bardi, A. Cesaroni and L. Rossi, Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control,, \emph{ESAIM Control Optim. Calc. Var.}, (). doi: http://dx.doi.org/10.1051/cocv/2015033. Google Scholar

[2]

G. Barles and J. Burdeau, The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit control problems,, \emph{Comm. Part. Diff. Eq.}, 20 (1995), 129. doi: 10.1080/03605309508821090. Google Scholar

[3]

G. Barles, A. Porretta and T.T. Tchamba, On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations,, \emph{J. Math. Pures Appl.}, 94 (2010), 497. doi: 10.1016/j.matpur.2010.03.006. Google Scholar

[4]

G. Barles and P.E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations,, \emph{SIAM J. Math. Anal.}, 32 (2001), 1311. doi: 10.1137/S0036141000369344. Google Scholar

[5]

H. Berestycki, I. Capuzzo Dolcetta, A. Porretta and L. Rossi, Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators,, \emph{J. Math. Pures Appl.}, 103 (2015), 1276. doi: 10.1016/j.matpur.2014.10.012. Google Scholar

[6]

F. Cagnetti, D. Gomes, H. Mitake and H.V. Tran, A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians,, \emph{Ann. Inst. H. Poincare Anal. Non Lineaire}, 32 (2015), 183. doi: 10.1016/j.anihpc.2013.10.005. Google Scholar

[7]

M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[8]

F. Da Lio, Large time behavior of solutions to parabolic equations with Neumann boundary conditions,, \emph{J. Math. Anal. Appl.}, 339 (2008), 384. doi: 10.1016/j.jmaa.2007.06.052. Google Scholar

[9]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, \emph{Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I.}, 5 (1956), 1. Google Scholar

[10]

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1988). Google Scholar

[11]

H. Ishii and P. Loreti, A class of stochastic optimal control problems with state constraints,, \emph{Indiana Univ. Math. J.}, 51 (2002), 1167. doi: 10.1512/iumj.2002.51.2079. Google Scholar

[12]

J.M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem,, \emph{Math. Ann.}, 283 (1989), 583. doi: 10.1007/BF01442856. Google Scholar

[13]

O. Ley and V.D. Nguyen, Large time behavior for some nonlinear degenerate parabolic equations,, \emph{J. Math. Pures Appl.}, 102 (2014), 293. doi: 10.1016/j.matpur.2013.11.010. Google Scholar

[14]

T. Leonori and A. Porretta, Gradient bounds for elliptic problems singular at the boundary,, \emph{Arch. Ration. Mech. Anal.}, 202 (2011), 663. doi: 10.1007/s00205-011-0436-9. Google Scholar

[15]

G.M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996). doi: 10.1142/3302. Google Scholar

[16]

M.V. Safonov, On the classical solution of Bellman's elliptic equation,, \emph{Sov. Math. Dokl.}, 30 (1984), 482. Google Scholar

[17]

N.S. Trudinger, On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations, Partial differential equations and the calculus of variations, Vol. II, 939-957,, \emph{Progr. Nonlinear Differential Equations Appl.}, (1989). Google Scholar

[18]

G. Tian and X.J. Wang, A priori estimates for fully nonlinear parabolic equations,, \emph{Int. Math. Res. Notes}, 169 (2012), 1. Google Scholar

show all references

References:
[1]

M. Bardi, A. Cesaroni and L. Rossi, Nonexistence of nonconstant solutions of some degenerate Bellman equations and applications to stochastic control,, \emph{ESAIM Control Optim. Calc. Var.}, (). doi: http://dx.doi.org/10.1051/cocv/2015033. Google Scholar

[2]

G. Barles and J. Burdeau, The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit control problems,, \emph{Comm. Part. Diff. Eq.}, 20 (1995), 129. doi: 10.1080/03605309508821090. Google Scholar

[3]

G. Barles, A. Porretta and T.T. Tchamba, On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations,, \emph{J. Math. Pures Appl.}, 94 (2010), 497. doi: 10.1016/j.matpur.2010.03.006. Google Scholar

[4]

G. Barles and P.E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations,, \emph{SIAM J. Math. Anal.}, 32 (2001), 1311. doi: 10.1137/S0036141000369344. Google Scholar

[5]

H. Berestycki, I. Capuzzo Dolcetta, A. Porretta and L. Rossi, Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators,, \emph{J. Math. Pures Appl.}, 103 (2015), 1276. doi: 10.1016/j.matpur.2014.10.012. Google Scholar

[6]

F. Cagnetti, D. Gomes, H. Mitake and H.V. Tran, A new method for large time behavior of degenerate viscous Hamilton-Jacobi equations with convex Hamiltonians,, \emph{Ann. Inst. H. Poincare Anal. Non Lineaire}, 32 (2015), 183. doi: 10.1016/j.anihpc.2013.10.005. Google Scholar

[7]

M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, \emph{Bull. Amer. Math. Soc. (N.S.)}, 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[8]

F. Da Lio, Large time behavior of solutions to parabolic equations with Neumann boundary conditions,, \emph{J. Math. Anal. Appl.}, 339 (2008), 384. doi: 10.1016/j.jmaa.2007.06.052. Google Scholar

[9]

G. Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine,, \emph{Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I.}, 5 (1956), 1. Google Scholar

[10]

D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer, (1988). Google Scholar

[11]

H. Ishii and P. Loreti, A class of stochastic optimal control problems with state constraints,, \emph{Indiana Univ. Math. J.}, 51 (2002), 1167. doi: 10.1512/iumj.2002.51.2079. Google Scholar

[12]

J.M. Lasry and P.-L. Lions, Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem,, \emph{Math. Ann.}, 283 (1989), 583. doi: 10.1007/BF01442856. Google Scholar

[13]

O. Ley and V.D. Nguyen, Large time behavior for some nonlinear degenerate parabolic equations,, \emph{J. Math. Pures Appl.}, 102 (2014), 293. doi: 10.1016/j.matpur.2013.11.010. Google Scholar

[14]

T. Leonori and A. Porretta, Gradient bounds for elliptic problems singular at the boundary,, \emph{Arch. Ration. Mech. Anal.}, 202 (2011), 663. doi: 10.1007/s00205-011-0436-9. Google Scholar

[15]

G.M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996). doi: 10.1142/3302. Google Scholar

[16]

M.V. Safonov, On the classical solution of Bellman's elliptic equation,, \emph{Sov. Math. Dokl.}, 30 (1984), 482. Google Scholar

[17]

N.S. Trudinger, On regularity and existence of viscosity solutions of nonlinear second order, elliptic equations, Partial differential equations and the calculus of variations, Vol. II, 939-957,, \emph{Progr. Nonlinear Differential Equations Appl.}, (1989). Google Scholar

[18]

G. Tian and X.J. Wang, A priori estimates for fully nonlinear parabolic equations,, \emph{Int. Math. Res. Notes}, 169 (2012), 1. Google Scholar

[1]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[2]

Jong-Shenq Guo, Masahiko Shimojo. Blowing up at zero points of potential for an initial boundary value problem. Communications on Pure & Applied Analysis, 2011, 10 (1) : 161-177. doi: 10.3934/cpaa.2011.10.161

[3]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[4]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial & Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[5]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[6]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[7]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[8]

Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049

[9]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[10]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[11]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[12]

Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627

[13]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[14]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[15]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[16]

Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917

[17]

Weishi Liu. Geometric approach to a singular boundary value problem with turning points. Conference Publications, 2005, 2005 (Special) : 624-633. doi: 10.3934/proc.2005.2005.624

[18]

J. Ángel Cid, Pedro J. Torres. Solvability for some boundary value problems with $\phi$-Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 727-732. doi: 10.3934/dcds.2009.23.727

[19]

Cong He, Hongjun Yu. Large time behavior of the solution to the Landau Equation with specular reflective boundary condition. Kinetic & Related Models, 2013, 6 (3) : 601-623. doi: 10.3934/krm.2013.6.601

[20]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure & Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

[Back to Top]