• Previous Article
    Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems
  • CPAA Home
  • This Issue
  • Next Article
    Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media
July  2016, 15(4): 1215-1231. doi: 10.3934/cpaa.2016.15.1215

Least energy solutions of nonlinear Schrödinger equations involving the half Laplacian and potential wells

1. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875 , China

Received  June 2015 Revised  January 2016 Published  April 2016

In this paper, we are concerned with the existence of least energy solutions of nonlinear Schrödinger equations involving the half Laplacian \begin{eqnarray} (-\Delta)^{1/2}u(x)+\lambda V(x)u(x)=u(x)^{p-1}, u(x)\geq 0, \quad x\in R^N, \end{eqnarray} for sufficiently large $\lambda$, $2 < p < \frac{2N}{N-1}$ for $N \geq 2$. $V(x)$ is a real continuous function on $R^N$. Using variational methods we prove the existence of least energy solution $u(x)$ which localize near the potential well int$(V^{-1}(0))$ for $\lambda$ large. Moreover, if the zero sets int$(V^{-1}(0))$ of $V(x)$ include more than one isolated components, then $u_\lambda(x)$ will be trapped around all the isolated components. However, in Laplacian case, when the parameter $\lambda$ large, the corresponding least energy solution will be trapped around only one isolated component and become arbitrary small in other components of int$(V^{-1}(0))$. This is the essential difference with the Laplacian problems since the operator $(-\Delta)^{1/2}$ is nonlocal.
Citation: Miaomiao Niu, Zhongwei Tang. Least energy solutions of nonlinear Schrödinger equations involving the half Laplacian and potential wells. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1215-1231. doi: 10.3934/cpaa.2016.15.1215
References:
[1]

A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations,, \emph{Arch. Ration. Mech. Anal.}, 140 (1997), 285. doi: 10.1007/s002050050067. Google Scholar

[2]

D. Applebaum, Lévy processes--from probability to finance and quantum groups,, \emph{Notices Amer. Math. Soc.}, 51 (2004), 1336. Google Scholar

[3]

T. Bartsch and Z. Wang, Multiple positive solutions for a nonlinear Schrödinger equation,, \emph{Z. Angew. Math. Phys.}, 51 (2000), 366. doi: 10.1007/s000330050003. Google Scholar

[4]

J.L. Bona and Y.A. Li, Decay and analyticity of solitary waves,, \emph{J. Math. Pures Appl.}, 76 (1997), 377. doi: 10.1016/S0021-7824(97)89957-6. Google Scholar

[5]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025. Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. in Part. Diff. Equa.}, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[7]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential,, \emph{J. Math. Phys.}, 53 (2012). doi: 10.1063/1.3701574. Google Scholar

[8]

S. Cingolani and M. Nolasco, Multi-peaks periodic semiclassical states for a class of nonlinear Schrödinger equations,, \emph{Proc. Roy. Soc. Edinburgh.}, 128 (1998), 1249. doi: 10.1017/S030821050002730X. Google Scholar

[9]

J. Dávila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation,, \emph{J. Diff. Equa.}, 256 (2014), 858. doi: 10.1016/j.jde.2013.10.006. Google Scholar

[10]

A. de Bouard and J. C. Saut, Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves,, \emph{SIAM J. Math. Anal.}, 28 (1997), 1064. doi: 10.1137/S0036141096297662. Google Scholar

[11]

M. del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations,, \emph{J. Funct. Anal.}, 149 (1997), 245. doi: 10.1006/jfan.1996.3085. Google Scholar

[12]

M. del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, \emph{Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire.}, 15 (1998), 127. doi: 10.1016/S0294-1449(97)89296-7. Google Scholar

[13]

S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian,, \emph{Matematiche}, 68 (2013), 201. Google Scholar

[14]

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian,, \emph{Proc. Roy. Soc. Edinburgh.}, 142A (2012), 1237. doi: 10.1017/S0308210511000746. Google Scholar

[15]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, \emph{J. Funct. Anal.}, 69 (1986), 397. doi: 10.1016/0022-1236(86)90096-0. Google Scholar

[16]

R.L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $R$,, \emph{Acta Math.}, 210 (2013), 261. doi: 10.1007/s11511-013-0095-9. Google Scholar

[17]

R.L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian,, \emph{Comm. Pure. Appl. Math.}, (). Google Scholar

[18]

T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions,, \emph{J. Eur. Math. Soc.}, 16 (2014), 1111. doi: 10.4171/JEMS/456. Google Scholar

[19]

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part I., \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 1 (1984), 109. Google Scholar

[20]

M. Maris, On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation,, \emph{Nonlinear Anal.}, 51 (2002), 1073. doi: 10.1016/S0362-546X(01)00880-X. Google Scholar

[21]

Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential,, \emph{Comm. Math. Phys.}, 131 (1990), 223. Google Scholar

[22]

Y.-G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_a$,, \emph{Comm. Part. Diff. Equat.}, 13 (1988), 1499. doi: 10.1080/03605308808820585. Google Scholar

[23]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms,, \emph{Discrete Contin. Dyn. Syst.}, 31 (2011), 975. doi: 10.3934/dcds.2011.31.975. Google Scholar

[24]

Z. Tang, On the least energy solutions of nonlinear Schrödinger equations with electromagnetic fields,, \emph{Comput. Math. Appl.}, 54 (2007), 627. doi: 10.1016/j.camwa.2006.12.031. Google Scholar

show all references

References:
[1]

A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations,, \emph{Arch. Ration. Mech. Anal.}, 140 (1997), 285. doi: 10.1007/s002050050067. Google Scholar

[2]

D. Applebaum, Lévy processes--from probability to finance and quantum groups,, \emph{Notices Amer. Math. Soc.}, 51 (2004), 1336. Google Scholar

[3]

T. Bartsch and Z. Wang, Multiple positive solutions for a nonlinear Schrödinger equation,, \emph{Z. Angew. Math. Phys.}, 51 (2000), 366. doi: 10.1007/s000330050003. Google Scholar

[4]

J.L. Bona and Y.A. Li, Decay and analyticity of solitary waves,, \emph{J. Math. Pures Appl.}, 76 (1997), 377. doi: 10.1016/S0021-7824(97)89957-6. Google Scholar

[5]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian,, \emph{Adv. Math.}, 224 (2010), 2052. doi: 10.1016/j.aim.2010.01.025. Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, \emph{Comm. in Part. Diff. Equa.}, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[7]

M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential,, \emph{J. Math. Phys.}, 53 (2012). doi: 10.1063/1.3701574. Google Scholar

[8]

S. Cingolani and M. Nolasco, Multi-peaks periodic semiclassical states for a class of nonlinear Schrödinger equations,, \emph{Proc. Roy. Soc. Edinburgh.}, 128 (1998), 1249. doi: 10.1017/S030821050002730X. Google Scholar

[9]

J. Dávila, M. del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation,, \emph{J. Diff. Equa.}, 256 (2014), 858. doi: 10.1016/j.jde.2013.10.006. Google Scholar

[10]

A. de Bouard and J. C. Saut, Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves,, \emph{SIAM J. Math. Anal.}, 28 (1997), 1064. doi: 10.1137/S0036141096297662. Google Scholar

[11]

M. del Pino and P. Felmer, Semi-classical states for nonlinear Schrödinger equations,, \emph{J. Funct. Anal.}, 149 (1997), 245. doi: 10.1006/jfan.1996.3085. Google Scholar

[12]

M. del Pino and P. Felmer, Multi-peak bound states for nonlinear Schrödinger equations,, \emph{Ann. Inst. H. Poincar$\acutee$ Anal. Non Lin$\acutee$aire.}, 15 (1998), 127. doi: 10.1016/S0294-1449(97)89296-7. Google Scholar

[13]

S. Dipierro, G. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian,, \emph{Matematiche}, 68 (2013), 201. Google Scholar

[14]

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian,, \emph{Proc. Roy. Soc. Edinburgh.}, 142A (2012), 1237. doi: 10.1017/S0308210511000746. Google Scholar

[15]

A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential,, \emph{J. Funct. Anal.}, 69 (1986), 397. doi: 10.1016/0022-1236(86)90096-0. Google Scholar

[16]

R.L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $R$,, \emph{Acta Math.}, 210 (2013), 261. doi: 10.1007/s11511-013-0095-9. Google Scholar

[17]

R.L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian,, \emph{Comm. Pure. Appl. Math.}, (). Google Scholar

[18]

T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions,, \emph{J. Eur. Math. Soc.}, 16 (2014), 1111. doi: 10.4171/JEMS/456. Google Scholar

[19]

P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part I., \emph{Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire}, 1 (1984), 109. Google Scholar

[20]

M. Maris, On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation,, \emph{Nonlinear Anal.}, 51 (2002), 1073. doi: 10.1016/S0362-546X(01)00880-X. Google Scholar

[21]

Y.-G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential,, \emph{Comm. Math. Phys.}, 131 (1990), 223. Google Scholar

[22]

Y.-G. Oh, Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of class $(V)_a$,, \emph{Comm. Part. Diff. Equat.}, 13 (1988), 1499. doi: 10.1080/03605308808820585. Google Scholar

[23]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms,, \emph{Discrete Contin. Dyn. Syst.}, 31 (2011), 975. doi: 10.3934/dcds.2011.31.975. Google Scholar

[24]

Z. Tang, On the least energy solutions of nonlinear Schrödinger equations with electromagnetic fields,, \emph{Comput. Math. Appl.}, 54 (2007), 627. doi: 10.1016/j.camwa.2006.12.031. Google Scholar

[1]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[2]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[3]

Jaeyoung Byeon, Sungwon Cho, Junsang Park. On the location of a peak point of a least energy solution for Hénon equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1055-1081. doi: 10.3934/dcds.2011.30.1055

[4]

Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure & Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237

[5]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[6]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the instability of the nonlinear Schrödinger equation below the energy norm. Communications on Pure & Applied Analysis, 2003, 2 (1) : 33-50. doi: 10.3934/cpaa.2003.2.33

[7]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[8]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[9]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[10]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[11]

Futoshi Takahashi. On the number of maximum points of least energy solution to a two-dimensional Hénon equation with large exponent. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1237-1241. doi: 10.3934/cpaa.2013.12.1237

[12]

Xavier Cabré, Eleonora Cinti. Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1179-1206. doi: 10.3934/dcds.2010.28.1179

[13]

Shalva Amiranashvili, Raimondas  Čiegis, Mindaugas Radziunas. Numerical methods for a class of generalized nonlinear Schrödinger equations. Kinetic & Related Models, 2015, 8 (2) : 215-234. doi: 10.3934/krm.2015.8.215

[14]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

[15]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[16]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[17]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[18]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[19]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[20]

Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]