July  2016, 15(4): 1107-1123. doi: 10.3934/cpaa.2016.15.1107

Nonlinear noncoercive Neumann problems

1. 

Jagiellonian University, Faculty of Mathematics and Computer Science, ul. Łojasiewicza 6, 30-348 Kraków

2. 

Faculty of Mathematics and Computer Science, ul. Łojasiewicza 6, 30-348 Kraków, Poland

3. 

Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens 15780

Received  August 2014 Revised  February 2016 Published  April 2016

We consider nonlinear, nonhomogeneous and noncoercive Neumann problems with a Carathéodory reaction which is either $(p-1)$-superlinear near $\pm\infty$ (without satisfying the usual in such cases Ambrosetti-Rabinowitz condition) or $(p-1)$-sublinear near $\pm\infty$. Using variational methods and Morse theory (critical groups) we prove two existence theorems.
Citation: Leszek Gasiński, Liliana Klimczak, Nikolaos S. Papageorgiou. Nonlinear noncoercive Neumann problems. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1107-1123. doi: 10.3934/cpaa.2016.15.1107
References:
[1]

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Funct. Anal.}, 14 (1973), 349. Google Scholar

[2]

T. Bartsch and S.-J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, \emph{Nonlinear Anal.}, 28 (1997), 419. doi: 10.1016/0362-546X(95)00167-T. Google Scholar

[3]

J. Dugundji, Topology,, Allyn and Bacon, (1978). Google Scholar

[4]

M. Filippakis and N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the $p$-Laplacian,, \emph{J. Differential Equations}, 245 (2008), 1883. doi: 10.1016/j.jde.2008.07.004. Google Scholar

[5]

L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis,, Chapman and Hall/CRC Press, (2006). Google Scholar

[6]

L. Gasiński and N.S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian-type equations,, \emph{Adv. Nonlinear Stud.}, 8 (2008), 843. Google Scholar

[7]

L. Gasiński and N.S. Papageorgiou, Multiple solutions for nonlinear Dirichlet problems with concave terms,, \emph{Math. Scand.}, 113 (2013), 206. Google Scholar

[8]

L. Gasiński and N.S. Papageorgiou, A pair of positive solutions for the Dirichlet $p(z)$-Laplacian with concave and convex nonlinearities,, \emph{J. Global Optim.}, 56 (2013), 1347. doi: 10.1007/s10898-011-9841-8. Google Scholar

[9]

L. Gasiński and N.S. Papageorgiou, On generalized logistic equations with a non-homogeneous differential operator,, \emph{Dyn. Syst.}, 29 (2014), 190. doi: 10.1080/14689367.2013.870125. Google Scholar

[10]

L. Gasiński and N.S. Papageorgiou, Positive solutions for parametric equidiffusive $p$-Laplacian equations,, \emph{Acta Math. Sci. Ser. B Engl. Ed.}, 34 (2014), 610. doi: 10.1016/S0252-9602(14)60033-3. Google Scholar

[11]

L. Gasiński and N.S. Papageorgiou, A pair of positive solutions for $(p,q)$-equations with combined nonlinearities,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 203. doi: 10.3934/cpaa.2014.13.203. Google Scholar

[12]

L. Gasiński and N.S. Papageorgiou, Dirichlet $(p,q)$-equations at resonance,, \emph{Discrete Contin. Dyn. Syst.}, 34 (2014), 2037. doi: 10.3934/dcds.2014.34.2037. Google Scholar

[13]

L. Gasiński and N.S. Papageorgiou, Multiple solutions for a class of nonlinear Neumann eigenvalue problems,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 1491. doi: 10.3934/cpaa.2014.13.1491. Google Scholar

[14]

A. Granas and J. Dugundji, Fixed Point Theory,, Springer, (2003). doi: 10.1007/978-0-387-21593-8. Google Scholar

[15]

Q.-S. Jiu and J.-B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian,, \emph{J. Math. Anal. Appl.}, 281 (2003), 587. doi: 10.1016/S0022-247X(03)00165-3. Google Scholar

[16]

G.M. Lieberman, The natural generalizations of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations,, \emph{Comm. Partial Differential Equations}, 16 (1991), 311. doi: 10.1080/03605309108820761. Google Scholar

[17]

V. Moroz, Solutions of superlinear at zero elliptic equations via Morse theory,, \emph{Topol. Methods Nonlinear Anal.}, 10 (1997), 387. Google Scholar

[18]

D. Motreanu, V.V. Motreanu and N.S. Papageorgiou, A unified approach for multiple constant sign and nodal solutions,, \emph{Adv. Differential Equations}, 121 (2007), 1363. Google Scholar

[19]

D. Motreanu, V. Motreanu and N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems,, Springer, (2014). doi: 10.1007/978-1-4614-9323-5. Google Scholar

[20]

Z.-Q. Wang, On a superlinear elliptic equation,, \emph{Ann. Inst. H. Poincar{\'e} Anal. Non Lin{\'e}aire}, 8 (1991), 43. Google Scholar

show all references

References:
[1]

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications,, \emph{J. Funct. Anal.}, 14 (1973), 349. Google Scholar

[2]

T. Bartsch and S.-J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance,, \emph{Nonlinear Anal.}, 28 (1997), 419. doi: 10.1016/0362-546X(95)00167-T. Google Scholar

[3]

J. Dugundji, Topology,, Allyn and Bacon, (1978). Google Scholar

[4]

M. Filippakis and N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the $p$-Laplacian,, \emph{J. Differential Equations}, 245 (2008), 1883. doi: 10.1016/j.jde.2008.07.004. Google Scholar

[5]

L. Gasiński and N.S. Papageorgiou, Nonlinear Analysis,, Chapman and Hall/CRC Press, (2006). Google Scholar

[6]

L. Gasiński and N.S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian-type equations,, \emph{Adv. Nonlinear Stud.}, 8 (2008), 843. Google Scholar

[7]

L. Gasiński and N.S. Papageorgiou, Multiple solutions for nonlinear Dirichlet problems with concave terms,, \emph{Math. Scand.}, 113 (2013), 206. Google Scholar

[8]

L. Gasiński and N.S. Papageorgiou, A pair of positive solutions for the Dirichlet $p(z)$-Laplacian with concave and convex nonlinearities,, \emph{J. Global Optim.}, 56 (2013), 1347. doi: 10.1007/s10898-011-9841-8. Google Scholar

[9]

L. Gasiński and N.S. Papageorgiou, On generalized logistic equations with a non-homogeneous differential operator,, \emph{Dyn. Syst.}, 29 (2014), 190. doi: 10.1080/14689367.2013.870125. Google Scholar

[10]

L. Gasiński and N.S. Papageorgiou, Positive solutions for parametric equidiffusive $p$-Laplacian equations,, \emph{Acta Math. Sci. Ser. B Engl. Ed.}, 34 (2014), 610. doi: 10.1016/S0252-9602(14)60033-3. Google Scholar

[11]

L. Gasiński and N.S. Papageorgiou, A pair of positive solutions for $(p,q)$-equations with combined nonlinearities,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 203. doi: 10.3934/cpaa.2014.13.203. Google Scholar

[12]

L. Gasiński and N.S. Papageorgiou, Dirichlet $(p,q)$-equations at resonance,, \emph{Discrete Contin. Dyn. Syst.}, 34 (2014), 2037. doi: 10.3934/dcds.2014.34.2037. Google Scholar

[13]

L. Gasiński and N.S. Papageorgiou, Multiple solutions for a class of nonlinear Neumann eigenvalue problems,, \emph{Commun. Pure Appl. Anal.}, 13 (2014), 1491. doi: 10.3934/cpaa.2014.13.1491. Google Scholar

[14]

A. Granas and J. Dugundji, Fixed Point Theory,, Springer, (2003). doi: 10.1007/978-0-387-21593-8. Google Scholar

[15]

Q.-S. Jiu and J.-B. Su, Existence and multiplicity results for Dirichlet problems with $p$-Laplacian,, \emph{J. Math. Anal. Appl.}, 281 (2003), 587. doi: 10.1016/S0022-247X(03)00165-3. Google Scholar

[16]

G.M. Lieberman, The natural generalizations of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations,, \emph{Comm. Partial Differential Equations}, 16 (1991), 311. doi: 10.1080/03605309108820761. Google Scholar

[17]

V. Moroz, Solutions of superlinear at zero elliptic equations via Morse theory,, \emph{Topol. Methods Nonlinear Anal.}, 10 (1997), 387. Google Scholar

[18]

D. Motreanu, V.V. Motreanu and N.S. Papageorgiou, A unified approach for multiple constant sign and nodal solutions,, \emph{Adv. Differential Equations}, 121 (2007), 1363. Google Scholar

[19]

D. Motreanu, V. Motreanu and N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems,, Springer, (2014). doi: 10.1007/978-1-4614-9323-5. Google Scholar

[20]

Z.-Q. Wang, On a superlinear elliptic equation,, \emph{Ann. Inst. H. Poincar{\'e} Anal. Non Lin{\'e}aire}, 8 (1991), 43. Google Scholar

[1]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[2]

Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391

[3]

Dieter Mayer, Tobias Mühlenbruch, Fredrik Strömberg. The transfer operator for the Hecke triangle groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2453-2484. doi: 10.3934/dcds.2012.32.2453

[4]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[5]

Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213

[6]

Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889

[7]

Diego Averna, Nikolaos S. Papageorgiou, Elisabetta Tornatore. Multiple solutions for nonlinear nonhomogeneous resonant coercive problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 155-178. doi: 10.3934/dcdss.2018010

[8]

Boris Hasselblatt. Critical regularity of invariant foliations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 931-937. doi: 10.3934/dcds.2002.8.931

[9]

Mónica Clapp, Marco Squassina. Nonhomogeneous polyharmonic elliptic problems at critical growth with symmetric data. Communications on Pure & Applied Analysis, 2003, 2 (2) : 171-186. doi: 10.3934/cpaa.2003.2.171

[10]

Marcos L. M. Carvalho, José Valdo A. Goncalves, Claudiney Goulart, Olímpio H. Miyagaki. Multiplicity of solutions for a nonhomogeneous quasilinear elliptic problem with critical growth. Communications on Pure & Applied Analysis, 2019, 18 (1) : 83-106. doi: 10.3934/cpaa.2019006

[11]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[12]

Salomón Alarcón. Multiple solutions for a critical nonhomogeneous elliptic problem in domains with small holes. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1269-1289. doi: 10.3934/cpaa.2009.8.1269

[13]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[14]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[15]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[16]

Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568

[17]

Hüseyin Bereketoğlu, Mihály Pituk. Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays. Conference Publications, 2003, 2003 (Special) : 100-107. doi: 10.3934/proc.2003.2003.100

[18]

Rafael De La Llave, R. Obaya. Regularity of the composition operator in spaces of Hölder functions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 157-184. doi: 10.3934/dcds.1999.5.157

[19]

Fei Jiang, Song Jiang, Weiwei Wang. Nonlinear Rayleigh-Taylor instability for nonhomogeneous incompressible viscous magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1853-1898. doi: 10.3934/dcdss.2016076

[20]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5003-5036. doi: 10.3934/dcds.2015.35.5003

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]