• Previous Article
    Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves
  • CPAA Home
  • This Issue
  • Next Article
    No--flux boundary value problems with anisotropic variable exponents
2015, 14(3): 861-880. doi: 10.3934/cpaa.2015.14.861

Admissibility, a general type of Lipschitz shadowing and structural stability

1. 

Department of Mathematics, University of Rijeka, 51000 Rijeka

Received  May 2014 Revised  October 2014 Published  March 2015

For a general one-sided nonautonomous dynamics defined by a sequence of linear operators, we consider the notion of a uniform exponential dichotomy and we characterize it completely in terms of the admissibility of a large class of function spaces. We apply those results to show that structural stability of a diffeomorphism is equivalent to a very general type of Lipschitz shadowing property. Our results extend those in [37] in various directions.
Citation: Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure & Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861
References:
[1]

L. Barreira, D. Dragičević and C. Valls, Exponential dichotomies with respect to a sequence of norms and admissibility,, \emph{Int. J. Math.}, 25 (2014). doi: 10.1142/S0129167X14500244.

[2]

L. Barreira, D. Dragičević and C. Valls, Nonuniform hyperbolicity and admissibility,, \emph{Adv. Nonlinear Stud.}, 14 (2014), 791.

[3]

L. Barreira, D. Dragičević and C. Valls, Strong and weak $(L^p,L^q)$-admissibility,, \emph{Bull. Sci. Math.}, 138 (2014), 721. doi: 10.1016/j.bulsci.2013.11.005.

[4]

L. Barreira, D. Dragičević and C. Valls, Admissibility on the half line for evolution families,, \emph{J. Anal. Math.}, ().

[5]

L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations,, Lect. Notes. in Math. 1926, (1926). doi: 10.1007/978-3-540-74775-8.

[6]

A. Ben-Artzi and I. Gohberg, Dichotomy of systems and invertibility of linear ordinary differential operators,, in \emph{Time-Variant Systems and Interpolation, (1992), 90.

[7]

A. Ben-Artzi, I. Gohberg and M. Kaashoek, Invertibility and dichotomy of differential operators on a half-line,, \emph{J. Dynam. Differential Equations}, 5 (1993), 1. doi: 10.1007/BF01063733.

[8]

C. Chicone and Yu. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations,, Mathematical Surveys and Monographs 70, (1999). doi: 10.1090/surv/070.

[9]

C. Coffman and J. Schäffer, Dichotomies for linear difference equations,, \emph{Math. Ann.}, 172 (1967), 139.

[10]

W. Coppel, Dichotomies in Stability Theory,, Lect. Notes. in Math. 629, (1978).

[11]

Ju. Dalec'kiĭ and M. Kreĭn, Stability of Solutions of Differential Equations in Banach Space,, Translations of Mathematical Monographs 43, (1974).

[12]

D. Dragičević and S. Slijepčević, Characterization of hyperbolicity and generalized shadowing lemma,, \emph{Dyn. Syst.}, 26 (2011), 483. doi: 10.1080/14689367.2011.606205.

[13]

A. Fakhari, K. Lee, and K. Tajbakhsh, Diffeomorphisms with $L^p$-shadowing property,, \emph{Acta Math. Sin.}, 27 (2011), 19. doi: 10.1007/s10114-011-0050-7.

[14]

J. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs 25, (1988).

[15]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lect. Notes in Math. 840, (1981).

[16]

N. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line,, \emph{J. Funct. Anal.}, 235 (2006), 330. doi: 10.1016/j.jfa.2005.11.002.

[17]

Yu. Latushkin, A. Pogan and R. Schnaubelt, Dichotomy and Fredholm properties of evolution equations,, \emph{J. Operator Theory}, 58 (2007), 387.

[18]

B. Levitan and V. Zhikov, Almost Periodic Functions and Differential Equations,, Cambridge University Press, (1982).

[19]

A. D. Maizel, On stability of solutions of systems of differential equations,, \emph{Trudi Uralskogo Politekhnicheskogo Instituta, 51 (1954), 20.

[20]

R. Ma né, Characterizations of AS diffeomorphisms,, in \emph{Geometry and Topology} (eds. Jacob Palis and Manfredo do Carmo), (1977), 389.

[21]

J. Massera and J. Schäffer, Linear differential equations and functional analysis. I.,, \emph{Ann. of Math.}, 67 (1958), 517.

[22]

J. Massera and J. Schäffer, Linear Differential Equations and Function Spaces,, Pure and Applied Mathematics 21, (1966).

[23]

N. Minh and N. Huy, Characterizations of dichotomies of evolution equations on the half-line,, \emph{J. Math. Anal. Appl.}, 261 (2001), 28. doi: 10.1006/jmaa.2001.7450.

[24]

N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line,, \emph{Integral Equations Operator Theory}, 32 (1998), 332. doi: 10.1007/BF01203774.

[25]

K. Palmer, Exponential dichotomies and Fredholm operators,, \emph{Proc. Amer. Math. Soc.}, 104 (1988), 149. doi: 10.2307/2047477.

[26]

K. Palmer, Shadowing in Dynamical Systems. Theory and Applications,, Kluwer, (2000). doi: 10.1007/978-1-4757-3210-8.

[27]

K. J. Palmer, S. Yu. Pilyugin and S. B. Tikhmirov, Lipschitz shadowing and structural stability of flows,, \emph{J. Differential Equations}, 252 (2012), 1723. doi: 10.1016/j.jde.2011.07.026.

[28]

O. Perron, Die Stabilitätsfrage bei Differentialgleichungen,, \emph{Math. Z.}, 32 (1930), 703. doi: 10.1007/BF01194662.

[29]

S. Yu. Pilyugin, Shadowing in Dynamical Systems,, Lecture Notes Math., (1706).

[30]

S. Yu. Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability,, \emph{Nonlinearity}, 23 (2010), 2509. doi: 10.1088/0951-7715/23/10/009.

[31]

S. Pilyugin, G. Volfson and D. Todorov, Dynamical systems with Lipschitz inverse shadowing properties,, \emph{Vestnik St. Petersburg University: Mathematics}, 44 (2011), 208. doi: 10.3103/S106345411103006X.

[32]

V. A. Pliss, Bounded solutions of inhomogeneous linear systems of differential equations,, in \emph{Problems of Asymptotic Theory of Nonlinear Oscillations} (Russian), (1977), 168.

[33]

P. Preda, A. Pogan and C. Preda, $(L^p,L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line,, \emph{Integral Equations Operator Theory}, 49 (2004), 405. doi: 10.1007/s00020-002-1268-7.

[34]

A. L. Sasu, Exponential dichotomy and dichotomy radius for difference equations,, \emph{J. Math. Anal. Appl.}, 344 (2008), 906. doi: 10.1016/j.jmaa.2008.03.019.

[35]

G. Sell and Y. You, Dynamics of Evolutionary Equation, Applied Mathematical Sciences 143, (2002). doi: 10.1007/978-1-4757-5037-9.

[36]

S. Tikhomirov, Hölder shadowing on finite intervals,, \emph{Ergodic Theory Dynam. Systems}, (2014).

[37]

D. Todorov, Generalizations of analogs of theorems of Maizel and Pliss and their application in Shadowing Theory,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013). doi: 10.3934/dcds.2013.33.4187.

[38]

W. Zhang, The Fredholm alternative and exponential dichotomies for parabolic equations,, \emph{J. Math. Anal. Appl.}, 191 (1985), 180. doi: 10.1016/S0022-247X(85)71126-2.

show all references

References:
[1]

L. Barreira, D. Dragičević and C. Valls, Exponential dichotomies with respect to a sequence of norms and admissibility,, \emph{Int. J. Math.}, 25 (2014). doi: 10.1142/S0129167X14500244.

[2]

L. Barreira, D. Dragičević and C. Valls, Nonuniform hyperbolicity and admissibility,, \emph{Adv. Nonlinear Stud.}, 14 (2014), 791.

[3]

L. Barreira, D. Dragičević and C. Valls, Strong and weak $(L^p,L^q)$-admissibility,, \emph{Bull. Sci. Math.}, 138 (2014), 721. doi: 10.1016/j.bulsci.2013.11.005.

[4]

L. Barreira, D. Dragičević and C. Valls, Admissibility on the half line for evolution families,, \emph{J. Anal. Math.}, ().

[5]

L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations,, Lect. Notes. in Math. 1926, (1926). doi: 10.1007/978-3-540-74775-8.

[6]

A. Ben-Artzi and I. Gohberg, Dichotomy of systems and invertibility of linear ordinary differential operators,, in \emph{Time-Variant Systems and Interpolation, (1992), 90.

[7]

A. Ben-Artzi, I. Gohberg and M. Kaashoek, Invertibility and dichotomy of differential operators on a half-line,, \emph{J. Dynam. Differential Equations}, 5 (1993), 1. doi: 10.1007/BF01063733.

[8]

C. Chicone and Yu. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations,, Mathematical Surveys and Monographs 70, (1999). doi: 10.1090/surv/070.

[9]

C. Coffman and J. Schäffer, Dichotomies for linear difference equations,, \emph{Math. Ann.}, 172 (1967), 139.

[10]

W. Coppel, Dichotomies in Stability Theory,, Lect. Notes. in Math. 629, (1978).

[11]

Ju. Dalec'kiĭ and M. Kreĭn, Stability of Solutions of Differential Equations in Banach Space,, Translations of Mathematical Monographs 43, (1974).

[12]

D. Dragičević and S. Slijepčević, Characterization of hyperbolicity and generalized shadowing lemma,, \emph{Dyn. Syst.}, 26 (2011), 483. doi: 10.1080/14689367.2011.606205.

[13]

A. Fakhari, K. Lee, and K. Tajbakhsh, Diffeomorphisms with $L^p$-shadowing property,, \emph{Acta Math. Sin.}, 27 (2011), 19. doi: 10.1007/s10114-011-0050-7.

[14]

J. Hale, Asymptotic Behavior of Dissipative Systems,, Mathematical Surveys and Monographs 25, (1988).

[15]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lect. Notes in Math. 840, (1981).

[16]

N. Huy, Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line,, \emph{J. Funct. Anal.}, 235 (2006), 330. doi: 10.1016/j.jfa.2005.11.002.

[17]

Yu. Latushkin, A. Pogan and R. Schnaubelt, Dichotomy and Fredholm properties of evolution equations,, \emph{J. Operator Theory}, 58 (2007), 387.

[18]

B. Levitan and V. Zhikov, Almost Periodic Functions and Differential Equations,, Cambridge University Press, (1982).

[19]

A. D. Maizel, On stability of solutions of systems of differential equations,, \emph{Trudi Uralskogo Politekhnicheskogo Instituta, 51 (1954), 20.

[20]

R. Ma né, Characterizations of AS diffeomorphisms,, in \emph{Geometry and Topology} (eds. Jacob Palis and Manfredo do Carmo), (1977), 389.

[21]

J. Massera and J. Schäffer, Linear differential equations and functional analysis. I.,, \emph{Ann. of Math.}, 67 (1958), 517.

[22]

J. Massera and J. Schäffer, Linear Differential Equations and Function Spaces,, Pure and Applied Mathematics 21, (1966).

[23]

N. Minh and N. Huy, Characterizations of dichotomies of evolution equations on the half-line,, \emph{J. Math. Anal. Appl.}, 261 (2001), 28. doi: 10.1006/jmaa.2001.7450.

[24]

N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line,, \emph{Integral Equations Operator Theory}, 32 (1998), 332. doi: 10.1007/BF01203774.

[25]

K. Palmer, Exponential dichotomies and Fredholm operators,, \emph{Proc. Amer. Math. Soc.}, 104 (1988), 149. doi: 10.2307/2047477.

[26]

K. Palmer, Shadowing in Dynamical Systems. Theory and Applications,, Kluwer, (2000). doi: 10.1007/978-1-4757-3210-8.

[27]

K. J. Palmer, S. Yu. Pilyugin and S. B. Tikhmirov, Lipschitz shadowing and structural stability of flows,, \emph{J. Differential Equations}, 252 (2012), 1723. doi: 10.1016/j.jde.2011.07.026.

[28]

O. Perron, Die Stabilitätsfrage bei Differentialgleichungen,, \emph{Math. Z.}, 32 (1930), 703. doi: 10.1007/BF01194662.

[29]

S. Yu. Pilyugin, Shadowing in Dynamical Systems,, Lecture Notes Math., (1706).

[30]

S. Yu. Pilyugin and S. Tikhomirov, Lipschitz shadowing implies structural stability,, \emph{Nonlinearity}, 23 (2010), 2509. doi: 10.1088/0951-7715/23/10/009.

[31]

S. Pilyugin, G. Volfson and D. Todorov, Dynamical systems with Lipschitz inverse shadowing properties,, \emph{Vestnik St. Petersburg University: Mathematics}, 44 (2011), 208. doi: 10.3103/S106345411103006X.

[32]

V. A. Pliss, Bounded solutions of inhomogeneous linear systems of differential equations,, in \emph{Problems of Asymptotic Theory of Nonlinear Oscillations} (Russian), (1977), 168.

[33]

P. Preda, A. Pogan and C. Preda, $(L^p,L^q)$-admissibility and exponential dichotomy of evolutionary processes on the half-line,, \emph{Integral Equations Operator Theory}, 49 (2004), 405. doi: 10.1007/s00020-002-1268-7.

[34]

A. L. Sasu, Exponential dichotomy and dichotomy radius for difference equations,, \emph{J. Math. Anal. Appl.}, 344 (2008), 906. doi: 10.1016/j.jmaa.2008.03.019.

[35]

G. Sell and Y. You, Dynamics of Evolutionary Equation, Applied Mathematical Sciences 143, (2002). doi: 10.1007/978-1-4757-5037-9.

[36]

S. Tikhomirov, Hölder shadowing on finite intervals,, \emph{Ergodic Theory Dynam. Systems}, (2014).

[37]

D. Todorov, Generalizations of analogs of theorems of Maizel and Pliss and their application in Shadowing Theory,, \emph{Discrete Contin. Dyn. Syst.}, 33 (2013). doi: 10.3934/dcds.2013.33.4187.

[38]

W. Zhang, The Fredholm alternative and exponential dichotomies for parabolic equations,, \emph{J. Math. Anal. Appl.}, 191 (1985), 180. doi: 10.1016/S0022-247X(85)71126-2.

[1]

Luis Barreira, Claudia Valls. Nonuniform exponential dichotomies and admissibility. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 39-53. doi: 10.3934/dcds.2011.30.39

[2]

Luis Barreira, Claudia Valls. Noninvertible cocycles: Robustness of exponential dichotomies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4111-4131. doi: 10.3934/dcds.2012.32.4111

[3]

Christian Pötzsche. Smooth roughness of exponential dichotomies, revisited. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 853-859. doi: 10.3934/dcdsb.2015.20.853

[4]

Luis Barreira, Claudia Valls. Characterization of stable manifolds for nonuniform exponential dichotomies. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1025-1046. doi: 10.3934/dcds.2008.21.1025

[5]

Luis Barreira, Claudia Valls. Admissibility versus nonuniform exponential behavior for noninvertible cocycles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1297-1311. doi: 10.3934/dcds.2013.33.1297

[6]

Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential trichotomy of dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2929-2962. doi: 10.3934/dcds.2014.34.2929

[7]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[8]

Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010

[9]

Adina Luminiţa Sasu, Bogdan Sasu. Exponential trichotomy and $(r, p)$-admissibility for discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3199-3220. doi: 10.3934/dcdsb.2017170

[10]

M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure & Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743

[11]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[12]

Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997

[13]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[14]

Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763

[15]

Rafael O. Ruggiero. Shadowing of geodesics, weak stability of the geodesic flow and global hyperbolic geometry. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 365-383. doi: 10.3934/dcds.2006.14.365

[16]

Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463

[17]

Wancheng Sheng, Tong Zhang. Structural stability of solutions to the Riemann problem for a scalar nonconvex CJ combustion model. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 651-667. doi: 10.3934/dcds.2009.25.651

[18]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[19]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[20]

Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]