• Previous Article
    Local and global existence results for the Navier-Stokes equations in the rotational framework
  • CPAA Home
  • This Issue
  • Next Article
    Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators
2015, 14(2): 623-626. doi: 10.3934/cpaa.2015.14.623

A note on the unique continuation property for fully nonlinear elliptic equations

1. 

Department of Mathematics, University of California, Irvine, CA 92697, United States

Received  June 2014 Revised  August 2014 Published  December 2014

We establish the strong unique continuation property for solutions to (1.1) where $F$ satisfies the structural assumptions A)-D). This extends a recent result of Armstrong and Silvestre (see [3]) where $F$ was assumed to be independent of $x$. We also establish an analogous unique continuation result at the boundary along the lines of [1] when the domain is $C^{3, \alpha}$.
Citation: Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623
References:
[1]

V. Adolfsson and L. Escauriaza, $C^{1, \alpha}$ domains and unique continuation at the boundary,, \emph{Comm. Pure Appl. Math.}, 50 (1997), 935. doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H.

[2]

N. Aronszajn, A. Krzywicki and J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds,, \emph{Ark. Mat.}, 4 (1962), 417.

[3]

S. N. Armstrong and L. Silvestre, Unique continuation for fully nonlinear elliptic equations,, \emph{Math. Res. Lett.}, 18 (2011), 921. doi: 10.4310/MRL.2011.v18.n5.a9.

[4]

X. Cabre and L. Caffarelli, Fully Nonlinear Elliptic Equations,, Volume 43 of American Mathematical Society Colloquium Publications. \textbf{43} American Mathematical Society, 43 (1995), 0.

[5]

N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, \emph{Indiana Univ. Math. J.}, 35 (1986), 245. doi: 10.1512/iumj.1986.35.35015.

[6]

N. Garofalo and F. Lin, Unique continuation for elliptic operators: a geometric-variational approach,, \emph{Comm. Pure Appl. Math.}, 40 (1987), 347. doi: 10.1002/cpa.3160400305.

[7]

I. Kukavica and K. Nystrom, Unique continuation at the boundary for Dini domains,, \emph{Proc. Amer. Math. Soc.}, 126 (1998), 441. doi: 10.1090/S0002-9939-98-04065-9.

[8]

G. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996), 981. doi: 10.1142/3302.

[9]

N. Nadirashvili and S. Vlădut, Singular solutions of Hessian fully nonlinear elliptic equations,, \emph{Adv. Math.}, 228 (2011), 1718. doi: 10.1016/j.aim.2011.06.030.

[10]

O. Savin, Small perturbation solutions for elliptic equations,, \emph{Comm. Partial Differential Equations}, 32 (2007), 557. doi: 10.1080/03605300500394405.

[11]

L. Silvestre and B. Sirakov, Boundary regularity for viscosity solutions of fully nonlinear elliptic equations,, http://arxiv.org/pdf/1306.6672.pdf., (). doi: 10.1080/03605302.2013.842249.

show all references

References:
[1]

V. Adolfsson and L. Escauriaza, $C^{1, \alpha}$ domains and unique continuation at the boundary,, \emph{Comm. Pure Appl. Math.}, 50 (1997), 935. doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H.

[2]

N. Aronszajn, A. Krzywicki and J. Szarski, A unique continuation theorem for exterior differential forms on Riemannian manifolds,, \emph{Ark. Mat.}, 4 (1962), 417.

[3]

S. N. Armstrong and L. Silvestre, Unique continuation for fully nonlinear elliptic equations,, \emph{Math. Res. Lett.}, 18 (2011), 921. doi: 10.4310/MRL.2011.v18.n5.a9.

[4]

X. Cabre and L. Caffarelli, Fully Nonlinear Elliptic Equations,, Volume 43 of American Mathematical Society Colloquium Publications. \textbf{43} American Mathematical Society, 43 (1995), 0.

[5]

N. Garofalo and F. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, \emph{Indiana Univ. Math. J.}, 35 (1986), 245. doi: 10.1512/iumj.1986.35.35015.

[6]

N. Garofalo and F. Lin, Unique continuation for elliptic operators: a geometric-variational approach,, \emph{Comm. Pure Appl. Math.}, 40 (1987), 347. doi: 10.1002/cpa.3160400305.

[7]

I. Kukavica and K. Nystrom, Unique continuation at the boundary for Dini domains,, \emph{Proc. Amer. Math. Soc.}, 126 (1998), 441. doi: 10.1090/S0002-9939-98-04065-9.

[8]

G. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996), 981. doi: 10.1142/3302.

[9]

N. Nadirashvili and S. Vlădut, Singular solutions of Hessian fully nonlinear elliptic equations,, \emph{Adv. Math.}, 228 (2011), 1718. doi: 10.1016/j.aim.2011.06.030.

[10]

O. Savin, Small perturbation solutions for elliptic equations,, \emph{Comm. Partial Differential Equations}, 32 (2007), 557. doi: 10.1080/03605300500394405.

[11]

L. Silvestre and B. Sirakov, Boundary regularity for viscosity solutions of fully nonlinear elliptic equations,, http://arxiv.org/pdf/1306.6672.pdf., (). doi: 10.1080/03605302.2013.842249.

[1]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[2]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[3]

Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103

[4]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[5]

Luisa Fattorusso, Antonio Tarsia. Regularity in Campanato spaces for solutions of fully nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1307-1323. doi: 10.3934/dcds.2011.31.1307

[6]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[7]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[8]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[9]

Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397

[10]

Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407

[11]

Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013

[12]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[13]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[14]

Roberto Triggiani. Unique continuation of boundary over-determined Stokes and Oseen eigenproblems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 645-677. doi: 10.3934/dcdss.2009.2.645

[15]

Chunhui Qiu, Rirong Yuan. On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5707-5730. doi: 10.3934/dcds.2017247

[16]

Feliz Minhós. Periodic solutions for some fully nonlinear fourth order differential equations. Conference Publications, 2011, 2011 (Special) : 1068-1077. doi: 10.3934/proc.2011.2011.1068

[17]

Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709

[18]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[19]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[20]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]