2014, 13(2): 585-603. doi: 10.3934/cpaa.2014.13.585

Regularity criterion for 3D Navier-Stokes equations in Besov spaces

1. 

Department of Mathematics, Zhejiang University, Hangzhou 310027

2. 

Department of Mathematics, Zhejiang University, Hangzhou, 310027, China

Received  October 2012 Revised  July 2013 Published  October 2013

Several regularity criterions of Leray-Hopf weak solutions $u$ to the 3D Navier-Stokes equations are obtained. The results show that a weak solution $u$ becomes regular if the gradient of velocity component $\nabla_{h}{u}$ (or $ \nabla{u_3}$) satisfies the additional conditions in the class of $L^{q}(0,T; \dot{B}_{p,r}^{s}(\mathbb{R}^{3}))$, where $\nabla_{h}=(\partial_{x_{1}},\partial_{x_{2}})$ is the horizontal gradient operator. Besides, we also consider the anisotropic regularity criterion for the weak solution of Navier-Stokes equations in $\mathbb{R}^3$. Finally, we also get a further regularity criterion, when give the sufficient condition on $\partial_3u_3$.
Citation: Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585
References:
[1]

H. Bahouri, R. Danchin and J. Y. Chemin, "Fourier Analysis and Nonlinear Partial Differential Equations, A Series of Comprehensive Studies in Mathematics,'', Springer Heidelberg Dordrecht London New York. Springer-Verlag Berlin Heidelberg, (2011). doi: 10.1007/978-3-642-16830-7.

[2]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbbR^n$,, Chinese Ann. Math. Ser. B, 16 (1995), 407.

[3]

L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations,, Dierential Integral Equations, 15 (2002), 1129.

[4]

C. S. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Rational Mech. Anal., 202 (2011), 919. doi: 10.1007/s00205-011-0439-6.

[5]

Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\mathbbR^3$,, J. Differential Equations, 216 (2005), 470. doi: 10.1016/j.jde.2005.06.001.

[6]

A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$,, \arXiv{0708.3067v2 [math.AP]}., ().

[7]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations,'', Vol. I, (1994). doi: 10.1007/978-0-387-09620-9.

[8]

S. Gala, A remark on the blow-up criterion of strong solutions to the Navier-Stokes equations,, Applied Mathematics and Computation, 217 (2011), 9488. doi: 10.1016/j.amc.2011.03.156.

[9]

E. Hopf, Über die anfang swetaufgabe für die hydrodynamischer grundgleichungan,, Math. Nach., 4 (1951), 213.

[10]

H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations,, Math. Z., 235 (2000), 173. doi: 10.1007/s002090000130.

[11]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251. doi: 10.1007/s002090100332.

[12]

H. Kozono and N. Yatsu, Extension criterion via two-components of vorticity on strong solution to the 3D Navier-Stokes equations,, Math. Z., 246 (2003), 55. doi: 10.1007/s00209-003-0576-1.

[13]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math Phys., 48 (2007). doi: 10.1063/1.2395919.

[14]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453. doi: 10.1088/0951-7715/19/2/012.

[15]

O. A. Ladyzhenskaya, "The Boundary Value Problems of Mathematical Physics,", Springer, (1985).

[16]

J. Leray, Sur le mouvement d'um liquide visqieux emlissant l'space,, Acta Math., 63 (1934), 193. doi: 10.1007/BF02547354.

[17]

J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations,, In, (2001), 239. doi: 10.1007/978-3-0348-8243-9_10.

[18]

P. Penel and M. Pokorný, On anisotropic regularity criteria for the Solutions to 3D Navier-Stokes equations,, J. Math. Fluid Mech., 13 (2011), 341. doi: 10.1007/s00021-010-0038-6.

[19]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483. doi: 10.1023/B:APOM.0000048124.64244.7e.

[20]

M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations,, Electron. J. Differ. Equ., 11 (2003), 1.

[21]

G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes,, Ann. Mat. Pura Appl. IV, 48 (1959), 173.

[22]

J. Serrin, "The Initial Value Problems for the Navier-Stokes Equations, in Nonlinear Problems,", edited by R. E. Langer, (1963).

[23]

H. Sohr, "The Navier-Stokes Equations, An Elementary Functional Analytic Approach,", Birkh$\ddot{\mboxa}$user Verlag, (2001). doi: 10.1007/978-3-0348-0551-3.

[24]

B. Q. Yuan and B. Zhang, Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices,, J. Differential Equations, 242 (2007), 1. doi: 0.1016/j.jde.2007.07.009.

[25]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097. doi: 10.1088/0951-7715/23/5/004.

show all references

References:
[1]

H. Bahouri, R. Danchin and J. Y. Chemin, "Fourier Analysis and Nonlinear Partial Differential Equations, A Series of Comprehensive Studies in Mathematics,'', Springer Heidelberg Dordrecht London New York. Springer-Verlag Berlin Heidelberg, (2011). doi: 10.1007/978-3-642-16830-7.

[2]

H. Beirão da Veiga, A new regularity class for the Navier-Stokes equations in $\mathbbR^n$,, Chinese Ann. Math. Ser. B, 16 (1995), 407.

[3]

L. C. Berselli, On a regularity criterion for the solutions to the 3D Navier-Stokes equations,, Dierential Integral Equations, 15 (2002), 1129.

[4]

C. S. Cao and E. S. Titi, Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor,, Arch. Rational Mech. Anal., 202 (2011), 919. doi: 10.1007/s00205-011-0439-6.

[5]

Z. F. Zhang and Q. L. Chen, Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in $\mathbbR^3$,, J. Differential Equations, 216 (2005), 470. doi: 10.1016/j.jde.2005.06.001.

[6]

A. Cheskidov and R. Shvydkoy, On the regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$,, \arXiv{0708.3067v2 [math.AP]}., ().

[7]

G. P. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations,'', Vol. I, (1994). doi: 10.1007/978-0-387-09620-9.

[8]

S. Gala, A remark on the blow-up criterion of strong solutions to the Navier-Stokes equations,, Applied Mathematics and Computation, 217 (2011), 9488. doi: 10.1016/j.amc.2011.03.156.

[9]

E. Hopf, Über die anfang swetaufgabe für die hydrodynamischer grundgleichungan,, Math. Nach., 4 (1951), 213.

[10]

H. Kozono and Y. Taniuchi, Bilinear estimates in BMO and the Navier-Stokes equations,, Math. Z., 235 (2000), 173. doi: 10.1007/s002090000130.

[11]

H. Kozono, T. Ogawa and Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations,, Math. Z., 242 (2002), 251. doi: 10.1007/s002090100332.

[12]

H. Kozono and N. Yatsu, Extension criterion via two-components of vorticity on strong solution to the 3D Navier-Stokes equations,, Math. Z., 246 (2003), 55. doi: 10.1007/s00209-003-0576-1.

[13]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math Phys., 48 (2007). doi: 10.1063/1.2395919.

[14]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453. doi: 10.1088/0951-7715/19/2/012.

[15]

O. A. Ladyzhenskaya, "The Boundary Value Problems of Mathematical Physics,", Springer, (1985).

[16]

J. Leray, Sur le mouvement d'um liquide visqieux emlissant l'space,, Acta Math., 63 (1934), 193. doi: 10.1007/BF02547354.

[17]

J. Neustupa and P. Penel, Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations,, In, (2001), 239. doi: 10.1007/978-3-0348-8243-9_10.

[18]

P. Penel and M. Pokorný, On anisotropic regularity criteria for the Solutions to 3D Navier-Stokes equations,, J. Math. Fluid Mech., 13 (2011), 341. doi: 10.1007/s00021-010-0038-6.

[19]

P. Penel and M. Pokorný, Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity,, Appl. Math., 49 (2004), 483. doi: 10.1023/B:APOM.0000048124.64244.7e.

[20]

M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations,, Electron. J. Differ. Equ., 11 (2003), 1.

[21]

G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes,, Ann. Mat. Pura Appl. IV, 48 (1959), 173.

[22]

J. Serrin, "The Initial Value Problems for the Navier-Stokes Equations, in Nonlinear Problems,", edited by R. E. Langer, (1963).

[23]

H. Sohr, "The Navier-Stokes Equations, An Elementary Functional Analytic Approach,", Birkh$\ddot{\mboxa}$user Verlag, (2001). doi: 10.1007/978-3-0348-0551-3.

[24]

B. Q. Yuan and B. Zhang, Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices,, J. Differential Equations, 242 (2007), 1. doi: 0.1016/j.jde.2007.07.009.

[25]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097. doi: 10.1088/0951-7715/23/5/004.

[1]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[2]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[3]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[4]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[5]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[6]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[7]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[8]

Sadek Gala. A new regularity criterion for the 3D MHD equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (3) : 973-980. doi: 10.3934/cpaa.2012.11.973

[9]

Aseel Farhat, M. S Jolly, Evelyn Lunasin. Bounds on energy and enstrophy for the 3D Navier-Stokes-$\alpha$ and Leray-$\alpha$ models. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2127-2140. doi: 10.3934/cpaa.2014.13.2127

[10]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[11]

Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 543-556. doi: 10.3934/dcds.2004.10.543

[12]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[13]

Milan Pokorný, Piotr B. Mucha. 3D steady compressible Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 151-163. doi: 10.3934/dcdss.2008.1.151

[14]

Andrei Fursikov. Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 269-289. doi: 10.3934/dcdss.2010.3.269

[15]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[16]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[17]

A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 289-314. doi: 10.3934/dcds.2004.10.289

[18]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[19]

Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199

[20]

Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]