2014, 13(6): 2465-2474. doi: 10.3934/cpaa.2014.13.2465

Some eigenvalue problems with non-local boundary conditions and applications

1. 

Faculdade de Matemática, Universidade Federal do Pará, Belém, Brazil

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Calle Tar a s/n, 41012-Seville

3. 

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Fac. de Matemáticas, Univ. de Sevilla, C/. Tarfia s/n, 41012 - Sevilla

Received  December 2013 Revised  April 2014 Published  July 2014

In this paper we study an elliptic eigenvalue problem with non-local boundary condition. We prove the existence of the principal eigenvalue and its main properties. As consequence, we show the existence and uniqueness of positive solution of a nonlinear problem arising from population dynamics.
Citation: Rafael Abreu, Cristian Morales-Rodrigo, Antonio Suárez. Some eigenvalue problems with non-local boundary conditions and applications. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2465-2474. doi: 10.3934/cpaa.2014.13.2465
References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,, \emph{SIAM Review.}, 18 (1976), 620.

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations,, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, (2003). doi: 10.1002/0470871296.

[3]

W. A. Day, Extensions of a property of heat equation to linear thermoelasticity and other theories,, \emph{Quart. Appl. Math.}, 40 (1982), 319.

[4]

J. M. Fraile, P. Koch Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, \emph{J. Differential Equations}, 127 (1996), 295. doi: 10.1006/jdeq.1996.0071.

[5]

A. Gladkov and M. Guedda, Semilinear heat equation with absorption and a nonlocal boundary condition,, \emph{Appl. Anal.}, 91 (2012), 2267. doi: 10.1080/00036811.2011.601297.

[6]

A. Gladkov and M. Guedda, Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition,, \emph{Nonlinear Anal.}, 74 (2011), 4573. doi: 10.1016/j.na.2011.04.027.

[7]

C. V. Pao, Dynamics of reaction-diffusion equations with nonlocal boundary conditions,, \emph{Quart. Appl. Math.}, 53 (1995), 173.

[8]

C. V. Pao, Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions. Positive solutions of nonlinear problems,, \emph{J. Comput. Appl. Math.}, 88 (1998), 225. doi: 10.1016/S0377-0427(97)00215-X.

[9]

Y. Wang, Solutions to nonlinear elliptic equations with a nonlocal boundary condition,, \emph{Electron. J. Differential Equations}, 05 (2002).

show all references

References:
[1]

H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces,, \emph{SIAM Review.}, 18 (1976), 620.

[2]

R. S. Cantrell and C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations,, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, (2003). doi: 10.1002/0470871296.

[3]

W. A. Day, Extensions of a property of heat equation to linear thermoelasticity and other theories,, \emph{Quart. Appl. Math.}, 40 (1982), 319.

[4]

J. M. Fraile, P. Koch Medina, J. López-Gómez and S. Merino, Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation,, \emph{J. Differential Equations}, 127 (1996), 295. doi: 10.1006/jdeq.1996.0071.

[5]

A. Gladkov and M. Guedda, Semilinear heat equation with absorption and a nonlocal boundary condition,, \emph{Appl. Anal.}, 91 (2012), 2267. doi: 10.1080/00036811.2011.601297.

[6]

A. Gladkov and M. Guedda, Blow-up problem for semilinear heat equation with absorption and a nonlocal boundary condition,, \emph{Nonlinear Anal.}, 74 (2011), 4573. doi: 10.1016/j.na.2011.04.027.

[7]

C. V. Pao, Dynamics of reaction-diffusion equations with nonlocal boundary conditions,, \emph{Quart. Appl. Math.}, 53 (1995), 173.

[8]

C. V. Pao, Asymptotic behavior of solutions of reaction-diffusion equations with nonlocal boundary conditions. Positive solutions of nonlinear problems,, \emph{J. Comput. Appl. Math.}, 88 (1998), 225. doi: 10.1016/S0377-0427(97)00215-X.

[9]

Y. Wang, Solutions to nonlinear elliptic equations with a nonlocal boundary condition,, \emph{Electron. J. Differential Equations}, 05 (2002).

[1]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[2]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[3]

Nikolai Dokuchaev. On forward and backward SPDEs with non-local boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5335-5351. doi: 10.3934/dcds.2015.35.5335

[4]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[5]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[6]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[7]

Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511

[8]

Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037

[9]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[10]

Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551

[11]

Hongjie Dong, Doyoon Kim. Schauder estimates for a class of non-local elliptic equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2319-2347. doi: 10.3934/dcds.2013.33.2319

[12]

Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487

[13]

Tao Wang. Global dynamics of a non-local delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2475-2492. doi: 10.3934/cpaa.2014.13.2475

[14]

Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701

[15]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

[16]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[17]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

[18]

Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653

[19]

A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35

[20]

Michael Herty, Reinhard Illner. Coupling of non-local driving behaviour with fundamental diagrams. Kinetic & Related Models, 2012, 5 (4) : 843-855. doi: 10.3934/krm.2012.5.843

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]