2014, 13(1): 225-236. doi: 10.3934/cpaa.2014.13.225

The existence and blow-up criterion of liquid crystals system in critical Besov space

1. 

Institute of Mathematics, Hangzhou Dianzi University, Zhejiang, Hangzhou, 310018, China

2. 

Institute of Mathematics, Fudan University, Shanghai

Received  December 2012 Revised  April 2013 Published  July 2013

We consider the existence of strong solution to liquid crystals system in critical Besov space, and give a criterion which is similar to Serrin's criterion on regularity of weak solution to Navier-Stokes equations.
Citation: Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225
References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, "Fourier Analysis and Nonlinear Partial Differential Equations,", Springer, (2011).

[2]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations,, Invent. Math., 141 (2000), 579. doi: 10.1007/s002220000078.

[3]

R. Danchin, "Fourier Analysis Methods for PDE's,", 2005. Available from: \url{http://www.fichier-pdf.fr/2011/12/13/courschine/courschine.pdf}., ().

[4]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371. doi: 10.1007/BF00253358.

[5]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I,, Arch. Rational Mech. Anal., 16 (1964), 269. doi: 10.1007/BF00276188.

[6]

M. C. Hong, Global existence of solutions of the simplified Ericksen–Leslie system in dimension two,, Calc. Var., 40 (2011), 15. doi: 10.1007/s00526-010-0331-5.

[7]

H. Kozono and Y. Shimada, Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations,, Math. Nachr., 276 (2004), 63. doi: 10.1002/mana.200310213.

[8]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1986), 265. doi: 10.1007/BF00251810.

[9]

X. L. Li and D. H. Wang, Global solution to the incompressible flow of liquid crystals,, J. Differential Equations, 252 (2012), 745. doi: 10.1016/j.jde.2011.08.045.

[10]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789. doi: 10.1002/cpa.3160420605.

[11]

F. H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals,, Discrete Contin. Dyn. Syst. A, 2 (1998), 1.

[12]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., (1995), 501. doi: 10.1002/cpa.3160480503.

[13]

F. H. Lin and C. Liu, Existence of Solutions for the Ericksen-Leslie System,, Arch. Rational Mech. Anal., 154 (2000), 135. doi: 10.1007/s002050000102.

[14]

F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid Crystal Flows in Two Dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297. doi: 10.1007/s00205-009-0278-x.

[15]

J. Y. Lin and S. J. Ding, On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces,, Math. Meth. Appl. Sci., 35 (2012), 158. doi: 10.1002/mma.1548.

[16]

C. Y. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Rational Mech. Anal., 200 (2011), 1. doi: 10.1007/s00205-010-0343-5.

[17]

H. Wu, X. Xu and C. Liu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties,, Calc. Var. Partial Differential Equations, 45 (2012), 319. doi: 10.1007/s00526-011-0460-5.

show all references

References:
[1]

H. Bahouri, J. Y. Chemin and R. Danchin, "Fourier Analysis and Nonlinear Partial Differential Equations,", Springer, (2011).

[2]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations,, Invent. Math., 141 (2000), 579. doi: 10.1007/s002220000078.

[3]

R. Danchin, "Fourier Analysis Methods for PDE's,", 2005. Available from: \url{http://www.fichier-pdf.fr/2011/12/13/courschine/courschine.pdf}., ().

[4]

J. L. Ericksen, Hydrostatic theory of liquid crystals,, Arch. Rational Mech. Anal., 9 (1962), 371. doi: 10.1007/BF00253358.

[5]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem I,, Arch. Rational Mech. Anal., 16 (1964), 269. doi: 10.1007/BF00276188.

[6]

M. C. Hong, Global existence of solutions of the simplified Ericksen–Leslie system in dimension two,, Calc. Var., 40 (2011), 15. doi: 10.1007/s00526-010-0331-5.

[7]

H. Kozono and Y. Shimada, Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations,, Math. Nachr., 276 (2004), 63. doi: 10.1002/mana.200310213.

[8]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1986), 265. doi: 10.1007/BF00251810.

[9]

X. L. Li and D. H. Wang, Global solution to the incompressible flow of liquid crystals,, J. Differential Equations, 252 (2012), 745. doi: 10.1016/j.jde.2011.08.045.

[10]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789. doi: 10.1002/cpa.3160420605.

[11]

F. H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals,, Discrete Contin. Dyn. Syst. A, 2 (1998), 1.

[12]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., (1995), 501. doi: 10.1002/cpa.3160480503.

[13]

F. H. Lin and C. Liu, Existence of Solutions for the Ericksen-Leslie System,, Arch. Rational Mech. Anal., 154 (2000), 135. doi: 10.1007/s002050000102.

[14]

F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid Crystal Flows in Two Dimensions,, Arch. Rational Mech. Anal., 197 (2010), 297. doi: 10.1007/s00205-009-0278-x.

[15]

J. Y. Lin and S. J. Ding, On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces,, Math. Meth. Appl. Sci., 35 (2012), 158. doi: 10.1002/mma.1548.

[16]

C. Y. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Rational Mech. Anal., 200 (2011), 1. doi: 10.1007/s00205-010-0343-5.

[17]

H. Wu, X. Xu and C. Liu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties,, Calc. Var. Partial Differential Equations, 45 (2012), 319. doi: 10.1007/s00526-011-0460-5.

[1]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[2]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[3]

Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357

[4]

Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475

[5]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[6]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[7]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[8]

Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681

[9]

Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

[10]

Jinhae Park, Feng Chen, Jie Shen. Modeling and simulation of switchings in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1419-1440. doi: 10.3934/dcds.2010.26.1419

[11]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[12]

Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445

[13]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[14]

Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1499-1511. doi: 10.3934/dcds.2013.33.1499

[15]

Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243

[16]

Xian-Gao Liu, Jianzhong Min, Kui Wang, Xiaotao Zhang. Serrin's regularity results for the incompressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5579-5594. doi: 10.3934/dcds.2016045

[17]

Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1

[18]

Tiziana Giorgi, Feras Yousef. Analysis of a model for bent-core liquid crystals columnar phases. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2001-2026. doi: 10.3934/dcdsb.2015.20.2001

[19]

Shijin Ding, Junyu Lin, Changyou Wang, Huanyao Wen. Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 539-563. doi: 10.3934/dcds.2012.32.539

[20]

Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic & Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]