• Previous Article
    Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions
  • CPAA Home
  • This Issue
  • Next Article
    Note on evolutionary free piston problem for Stokes equations with slip boundary conditions
2014, 13(4): 1613-1627. doi: 10.3934/cpaa.2014.13.1613

Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity

1. 

Dipartimento di Matematica e Fisica ``Ennio De Giorgi'', Università del Salento, Via per Arnesano, Lecce 73100, Italy

2. 

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261

3. 

Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgartenstr. 7, D-64289 Darmstadt

Received  November 2013 Revised  January 2014 Published  February 2014

It is proved the existence of a unique, global strong solution to the two-dimensional Navier-Stokes initial-value problem in exterior domains in the case where the velocity field tends, at large spatial distance, to a prescribed velocity field that is allowed to grow linearly.
Citation: Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613
References:
[1]

D. Chae, Nonexistence of asymptocially self-similar singularities in the Euler and Navier-Stokes equations,, \emph{Math. Ann.}, 338 (2007), 435. doi: 10.1007/s00208-007-0082-6.

[2]

F. Crispo and P. Maremonti, An interpolation inequality in exterior domains,, \emph{Rend. Sem. Mat. Univ. Padova}, 112 (2004), 11.

[3]

D. Fang, B. Han and T. Zhang, Global wellposedness result for density-dependent incompressible viscous fluid in $\mathbbR^2$ with linearly growing initial velocity,, \emph{Math. Meth. Appl. Sciences}, 36 (2013), 921. doi: 10.1002/mma.2649.

[4]

G. P. Galdi, An Introduction to the Navier-Stokes Initial-boundary Value Problem,, Adv. Math. Fluid Mech., (2000).

[5]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems,, 2$^{nd}$ edition. Springer Monographs in Mathematics, (2011). doi: 10.1007/978-0-387-09620-9.

[6]

J. G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions,, \emph{Indiana Univ. Math. J.}, 29 (1980), 639. doi: 10.1512/iumj.1980.29.29048.

[7]

M. Hieber and O. Sawada, The Navier-Stokes equations in $\mathbbR^n$ with linearly growing initial data,, \emph{Arch. Rational Mech. Anal.}, 175 (2005), 269. doi: 10.1007/s00205-004-0347-0.

[8]

M. Hieber, A. Rhandi and O. Sawada, The Navier-Stokes flow for globally Lipschitz continuous initial data,, in \emph{RIMS K\^oky\^uroku Bessatsu}, (2007), 159.

[9]

T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, \emph{Arch. Rational Mech. Anal.}, 150 (1999), 307. doi: 10.1007/s002050050190.

[10]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach Science Publishers, (1963).

[11]

J. Leray, Sur le mouvement d'un liquide visquex emplissant l'espace,, \emph{Acta Math.}, 63 (1996), 193. doi: 10.1007/BF02547354.

[12]

J. L. Lions, Espaces intermédiaires entre espaces Hilbertiens et applications,, \emph{Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine}, 2 (1958), 419.

[13]

J. Nečas, M. Růžička and V. Šverák, On self-similiar solutions of the Navier-Stokes equations,, \emph{Acta Math.}, 176 (1996), 283.

[14]

O. Sawada, The Navier-Stokes flow with linearly growing initial velocity in the whole space,, \emph{Bol. Soc. Parana. Mat.}, 22 (2004), 75. doi: 10.5269/bspm.v22i2.7484.

[15]

T.-P. Tsai, On Leray's self-similiar solutions of the Navier-Stokes equations satisfying local energy estimates,, \emph{Arch. Ration. Mech. Anal.}, 143 (1998), 29. doi: 10.1007/s002050050099.

show all references

References:
[1]

D. Chae, Nonexistence of asymptocially self-similar singularities in the Euler and Navier-Stokes equations,, \emph{Math. Ann.}, 338 (2007), 435. doi: 10.1007/s00208-007-0082-6.

[2]

F. Crispo and P. Maremonti, An interpolation inequality in exterior domains,, \emph{Rend. Sem. Mat. Univ. Padova}, 112 (2004), 11.

[3]

D. Fang, B. Han and T. Zhang, Global wellposedness result for density-dependent incompressible viscous fluid in $\mathbbR^2$ with linearly growing initial velocity,, \emph{Math. Meth. Appl. Sciences}, 36 (2013), 921. doi: 10.1002/mma.2649.

[4]

G. P. Galdi, An Introduction to the Navier-Stokes Initial-boundary Value Problem,, Adv. Math. Fluid Mech., (2000).

[5]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state Problems,, 2$^{nd}$ edition. Springer Monographs in Mathematics, (2011). doi: 10.1007/978-0-387-09620-9.

[6]

J. G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions,, \emph{Indiana Univ. Math. J.}, 29 (1980), 639. doi: 10.1512/iumj.1980.29.29048.

[7]

M. Hieber and O. Sawada, The Navier-Stokes equations in $\mathbbR^n$ with linearly growing initial data,, \emph{Arch. Rational Mech. Anal.}, 175 (2005), 269. doi: 10.1007/s00205-004-0347-0.

[8]

M. Hieber, A. Rhandi and O. Sawada, The Navier-Stokes flow for globally Lipschitz continuous initial data,, in \emph{RIMS K\^oky\^uroku Bessatsu}, (2007), 159.

[9]

T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, \emph{Arch. Rational Mech. Anal.}, 150 (1999), 307. doi: 10.1007/s002050050190.

[10]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow,, Gordon and Breach Science Publishers, (1963).

[11]

J. Leray, Sur le mouvement d'un liquide visquex emplissant l'espace,, \emph{Acta Math.}, 63 (1996), 193. doi: 10.1007/BF02547354.

[12]

J. L. Lions, Espaces intermédiaires entre espaces Hilbertiens et applications,, \emph{Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine}, 2 (1958), 419.

[13]

J. Nečas, M. Růžička and V. Šverák, On self-similiar solutions of the Navier-Stokes equations,, \emph{Acta Math.}, 176 (1996), 283.

[14]

O. Sawada, The Navier-Stokes flow with linearly growing initial velocity in the whole space,, \emph{Bol. Soc. Parana. Mat.}, 22 (2004), 75. doi: 10.5269/bspm.v22i2.7484.

[15]

T.-P. Tsai, On Leray's self-similiar solutions of the Navier-Stokes equations satisfying local energy estimates,, \emph{Arch. Ration. Mech. Anal.}, 143 (1998), 29. doi: 10.1007/s002050050099.

[1]

Yinnian He, Kaitai Li. Nonlinear Galerkin approximation of the two dimensional exterior Navier-Stokes problem. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 467-482. doi: 10.3934/dcds.1996.2.467

[2]

Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045

[3]

Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355

[4]

Paolo Maremonti. A note on the Navier-Stokes IBVP with small data in $L^n$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 255-267. doi: 10.3934/dcdss.2016.9.255

[5]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[6]

Ben-Yu Guo, Yu-Jian Jiao. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 315-345. doi: 10.3934/dcdsb.2009.11.315

[7]

Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic & Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015

[8]

Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081

[9]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[10]

Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135

[11]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[12]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[13]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[14]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[15]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[16]

Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215

[17]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[18]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[19]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[20]

Andrei Fursikov. Local existence theorems with unbounded set of input data and unboundedness of stable invariant manifolds for 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 269-289. doi: 10.3934/dcdss.2010.3.269

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]