# American Institute of Mathematical Sciences

2014, 13(4): 1481-1490. doi: 10.3934/cpaa.2014.13.1481

## Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum

 1 Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037 2 Department of Mathematics, Nanjing University, Nanjing 210093 3 Department of Mathematics, Inha University, Incheon 402-751, South Korea

Received  June 2013 Revised  January 2014 Published  February 2014

In this paper we establish the global existence of strong solution to the density-dependent incompressible magnetohydrodynamic equations with vaccum in a bounded domain in $R^2$. Furthermore, the limit as the heat conductivity coefficient tends to zero is also obtained.
Citation: Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481
##### References:
 [1] R. A. Adams and J. F. Fournier, Sobolev Spaces,, 2nd ed., (2003). [2] S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,, Studies in Mathematics and its Applications, (1990). [3] H. Beirão da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions. An $L^p$ theory,, \emph{J. Math. Fluid Mech.}, 12 (2010), 397. doi: 10.1007/2Fs00021-009-0295-4. [4] J.-S. Fan and F.-C. Li, Uniform local well-posedness to the density-dependent Navier-Stokes-Maxwell system,, \emph{Acta Appl. Math.}, (). doi: 10.1007/s10440-013-9857-9. [5] J.-F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals,, Numerical Mathematics and Scientific Computation, (2006). [6] S. Itoh, On the vanishing viscosity in the Cauchy problem for the equations of a nonhomogeneous incompressible fluid,, \emph{Glasgow Math. J.}, 36 (1994), 123. doi: 10.1017/S0017089500030639. [7] X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system,, \emph{J. Differential Equations}, 254 (2013), 511. doi: 10.1016/j.jde.2012.08.02. [8] M. L. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations,, \emph{Arch. Ration. Mech. Anal.}, 199 (2011), 739. doi: 10.1007/2Fs00205-010-0357-z. [9] T. Li and T. Qin, Physics and Partial Differential Equations,, Volume 1. Translated from the Chinese original by Yachun Li. Society for Industrial and Applied Mathematics (SIAM), (2012). [10] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, The Clarendon Press, (1996). [11] E.-H. Lieb and M. Loss, Analysis,, 2nd ed., (2001). [12] A. Lunardi, Interpolation Theory,, 2nd ed., (2009). [13] T. Ozawa, On critical cases of Sobolev's inequalities,, \emph{J. Funct. Anal.}, 127 (1995), 259. doi: pii/S0022123685710129. [14] H. Wu, Strong solutions to the incompressible magnetohydrodynamic equations with vacuum,, \emph{Comput. Math. Appl.}, 61 (2011), 2742. doi: 10.1016/j.camwa.2011.03.03.

show all references

##### References:
 [1] R. A. Adams and J. F. Fournier, Sobolev Spaces,, 2nd ed., (2003). [2] S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids,, Studies in Mathematics and its Applications, (1990). [3] H. Beirão da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions. An $L^p$ theory,, \emph{J. Math. Fluid Mech.}, 12 (2010), 397. doi: 10.1007/2Fs00021-009-0295-4. [4] J.-S. Fan and F.-C. Li, Uniform local well-posedness to the density-dependent Navier-Stokes-Maxwell system,, \emph{Acta Appl. Math.}, (). doi: 10.1007/s10440-013-9857-9. [5] J.-F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals,, Numerical Mathematics and Scientific Computation, (2006). [6] S. Itoh, On the vanishing viscosity in the Cauchy problem for the equations of a nonhomogeneous incompressible fluid,, \emph{Glasgow Math. J.}, 36 (1994), 123. doi: 10.1017/S0017089500030639. [7] X. Huang and Y. Wang, Global strong solution to the 2D nonhomogeneous incompressible MHD system,, \emph{J. Differential Equations}, 254 (2013), 511. doi: 10.1016/j.jde.2012.08.02. [8] M. L. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations,, \emph{Arch. Ration. Mech. Anal.}, 199 (2011), 739. doi: 10.1007/2Fs00205-010-0357-z. [9] T. Li and T. Qin, Physics and Partial Differential Equations,, Volume 1. Translated from the Chinese original by Yachun Li. Society for Industrial and Applied Mathematics (SIAM), (2012). [10] P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, The Clarendon Press, (1996). [11] E.-H. Lieb and M. Loss, Analysis,, 2nd ed., (2001). [12] A. Lunardi, Interpolation Theory,, 2nd ed., (2009). [13] T. Ozawa, On critical cases of Sobolev's inequalities,, \emph{J. Funct. Anal.}, 127 (1995), 259. doi: pii/S0022123685710129. [14] H. Wu, Strong solutions to the incompressible magnetohydrodynamic equations with vacuum,, \emph{Comput. Math. Appl.}, 61 (2011), 2742. doi: 10.1016/j.camwa.2011.03.03.
 [1] Jishan Fan, Tohru Ozawa. An approximation model for the density-dependent magnetohydrodynamic equations. Conference Publications, 2013, 2013 (special) : 207-216. doi: 10.3934/proc.2013.2013.207 [2] Weiping Yan. Existence of weak solutions to the three-dimensional density-dependent generalized incompressible magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1359-1385. doi: 10.3934/dcds.2015.35.1359 [3] Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041 [4] Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813 [5] Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395 [6] Jishan Fan, Tohru Ozawa. Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model. Conference Publications, 2011, 2011 (Special) : 400-409. doi: 10.3934/proc.2011.2011.400 [7] Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001 [8] Jacques A. L. Silva, Flávia T. Giordani. Density-dependent dispersal in multiple species metapopulations. Mathematical Biosciences & Engineering, 2008, 5 (4) : 843-857. doi: 10.3934/mbe.2008.5.843 [9] Qing Chen, Zhong Tan. Global existence in critical spaces for the compressible magnetohydrodynamic equations. Kinetic & Related Models, 2012, 5 (4) : 743-767. doi: 10.3934/krm.2012.5.743 [10] Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373 [11] Pierre Degond, Silke Henkes, Hui Yu. Self-organized hydrodynamics with density-dependent velocity. Kinetic & Related Models, 2017, 10 (1) : 193-213. doi: 10.3934/krm.2017008 [12] J. X. Velasco-Hernández, M. Núñez-López, G. Ramírez-Santiago, M. Hernández-Rosales. On carrying-capacity construction, metapopulations and density-dependent mortality. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1099-1110. doi: 10.3934/dcdsb.2017054 [13] Baojun Song, Wen Du, Jie Lou. Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1651-1668. doi: 10.3934/mbe.2013.10.1651 [14] Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481 [15] Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083 [16] Xiaoli Li, Dehua Wang. Global solutions to the incompressible magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 763-783. doi: 10.3934/cpaa.2012.11.763 [17] Quansen Jiu, Zhouping Xin. The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinetic & Related Models, 2008, 1 (2) : 313-330. doi: 10.3934/krm.2008.1.313 [18] Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20 [19] Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175 [20] Tracy L. Stepien, Erica M. Rutter, Yang Kuang. A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1157-1172. doi: 10.3934/mbe.2015.12.1157

2017 Impact Factor: 0.884