2014, 13(4): 1407-1433. doi: 10.3934/cpaa.2014.13.1407

Green's functions for parabolic systems of second order in time-varying domains

1. 

Division of Applied Mathematics, Brown University, 182 George Street, Providence, RI 02912

2. 

Department of Mathematics, Yonsei University, Seoul 120-749, South Korea

Received  March 2013 Revised  January 2013 Published  February 2014

We construct Green's functions for divergence form, second order parabolic systems in non-smooth time-varying domains whose boundaries are locally represented as graph of functions that are Lipschitz continuous in the spatial variables and $1/2$-Hölder continuous in the time variable, under the assumption that weak solutions of the system satisfy an interior Hölder continuity estimate. We also derive global pointwise estimates for Green's function in such time-varying domains under the assumption that weak solutions of the system vanishing on a portion of the boundary satisfy a certain local boundedness estimate and a local Hölder continuity estimate. In particular, our results apply to complex perturbations of a single real equation.
Citation: Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407
References:
[1]

D. G. Aronson, Bounds for the fundamental solution of a parabolic equation,, Bull. Amer. Math. Soc., 73 (1967), 890.

[2]

P. Auscher, Regularity theorems and heat kernel for elliptic operators,, J. London Math. Soc., 54 (1996), 284.

[3]

R. M. Brown, W. Hu, G. M. Lieberman, Weak solutions of parabolic equations in non-cylindrical domains,, Proc. Amer. Math. Soc., 125 (1997), 1785.

[4]

S. Cho, H. Dong, S. Kim, On the Green's matrices of strongly parabolic systems of second order,, Indiana Univ. Math. J., 57 (2008), 1633.

[5]

S. Cho, H. Dong, S. Kim, Global estimates for Green's matrix of second order parabolic systems with application to elliptic systems in two dimensional domains,, Potential Anal., 36 (2012), 339.

[6]

E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels,, Amer. J. Math., 109 (1987), 319.

[7]

G. Dolzmann, S. Müller, Estimates for Green's matrices of elliptic systems by $L^ p$ theory,, Manuscripta Math., 88 (1995), 261.

[8]

H. Dong, S. Kim, Green's matrices of second order elliptic systems with measurable coefficients in two dimensional domains,, Trans. Amer. Math. Soc., 361 (2009), 3303.

[9]

E. B. Fabes, D. W. Stroock, A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash,, Arch. Rational Mech. Anal., 96 (1986), 327.

[10]

M. Fuchs, The Green-matrix for elliptic systems which satisfy the Legendre-Hadamard condition,, Manuscripta Math., 46 (1984), 97.

[11]

M. Fuchs, The Green matrix for strongly elliptic systems of second order with continuous coefficients,, Z. Anal. Anwendungen, 5 (1986), 507.

[12]

M. Grüter, K.-O. Widman, The Green function for uniformly elliptic equations,, Manuscripta Math., 37 (1982), 303. doi: 10.1007/BF01166225.

[13]

S. Hofmann, S. Kim, Gaussian estimates for fundamental solutions to certain parabolic systems,, Publ. Mat., 48 (2004), 481. doi: 10.5565/PUBLMAT_48204_10.

[14]

S. Hofmann, S. Kim, The Green function estimates for strongly elliptic systems of second order,, Manuscripta Math., 124 (2007), 139. doi: 10.1007/s00229-007-0107-1.

[15]

S. Hofmann, J. L. Lewis, $L^2$ solvability and representation by caloric layer potentials in time-varying domains,, Ann. of Math., 144 (1996), 349. doi: 10.2307/2118595.

[16]

S. Hofmann, K. Nyström, Dirichlet problems for a nonstationary linearized system of Navier-Stokes equations in non-cylindrical domains,, Methods Appl. Anal., 9 (2002), 13.

[17]

M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems,, Princeton University Press: Princeton, (1983).

[18]

S. Kim, Gaussian estimates for fundamental solutions of second order parabolic systems with time-independent coefficients,, Trans. Amer. Math. Soc., 360 (2008), 6031. doi: 10.1090/S0002-9947-08-04485-1.

[19]

N. V. Krylov, Parabolic and elliptic equations with VMO coefficients,, Comm. Partial Differential Equations, 32 (2007), 453. doi: 10.1080/03605300600781626.

[20]

O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type,, American Mathematical Society: Providence, (1967).

[21]

J. L. Lewis, M. A. M. Murray, The method of layer potentials for the heat equation in time-varying domains,, Mem. Amer. Math. Soc., 114 (1995). doi: 10.1090/memo/0545.

[22]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996).

[23]

W. Littman, G. Stampacchia, H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients,, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43.

[24]

J. Moser, A Harnack inequality for parabolic differential equations,, Comm. Pure Appl. Math., 17 (1964), 101.

[25]

J. Nash, Continuity of solutions of parabolic and elliptic equations,, Amer. J. Math., 80 (1958), 931.

[26]

K. Nyström, The Dirichlet problem for second order parabolic operators,, Indiana Univ. Math. J., 46 (1997), 183. doi: 10.1512/iumj.1997.46.1277.

[27]

K. Nyström, On area integral estimates for solutions to parabolic systems in time-varying and non-smooth cylinders,, Trans. Amer. Math. Soc., 360 (2008), 2987. doi: 10.1090/S0002-9947-07-04328-0.

[28]

F. O. Porper, S. D. Eidel'man, Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them,, (Russian) Uspekhi Mat. Nauk, 39 (1984), 107.

[29]

J. Rivera-Noriega, Absolute continuity of parabolic measure and area integral estimates in non-cylindrical domains,, Indiana Univ. Math. J., 52 (2003), 477. doi: 10.1512/iumj.2003.52.2210.

[30]

M. Struwe, On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems,, Manuscripta Math., 35 (1981), 125. doi: 10.1007/BF01168452.

show all references

References:
[1]

D. G. Aronson, Bounds for the fundamental solution of a parabolic equation,, Bull. Amer. Math. Soc., 73 (1967), 890.

[2]

P. Auscher, Regularity theorems and heat kernel for elliptic operators,, J. London Math. Soc., 54 (1996), 284.

[3]

R. M. Brown, W. Hu, G. M. Lieberman, Weak solutions of parabolic equations in non-cylindrical domains,, Proc. Amer. Math. Soc., 125 (1997), 1785.

[4]

S. Cho, H. Dong, S. Kim, On the Green's matrices of strongly parabolic systems of second order,, Indiana Univ. Math. J., 57 (2008), 1633.

[5]

S. Cho, H. Dong, S. Kim, Global estimates for Green's matrix of second order parabolic systems with application to elliptic systems in two dimensional domains,, Potential Anal., 36 (2012), 339.

[6]

E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels,, Amer. J. Math., 109 (1987), 319.

[7]

G. Dolzmann, S. Müller, Estimates for Green's matrices of elliptic systems by $L^ p$ theory,, Manuscripta Math., 88 (1995), 261.

[8]

H. Dong, S. Kim, Green's matrices of second order elliptic systems with measurable coefficients in two dimensional domains,, Trans. Amer. Math. Soc., 361 (2009), 3303.

[9]

E. B. Fabes, D. W. Stroock, A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash,, Arch. Rational Mech. Anal., 96 (1986), 327.

[10]

M. Fuchs, The Green-matrix for elliptic systems which satisfy the Legendre-Hadamard condition,, Manuscripta Math., 46 (1984), 97.

[11]

M. Fuchs, The Green matrix for strongly elliptic systems of second order with continuous coefficients,, Z. Anal. Anwendungen, 5 (1986), 507.

[12]

M. Grüter, K.-O. Widman, The Green function for uniformly elliptic equations,, Manuscripta Math., 37 (1982), 303. doi: 10.1007/BF01166225.

[13]

S. Hofmann, S. Kim, Gaussian estimates for fundamental solutions to certain parabolic systems,, Publ. Mat., 48 (2004), 481. doi: 10.5565/PUBLMAT_48204_10.

[14]

S. Hofmann, S. Kim, The Green function estimates for strongly elliptic systems of second order,, Manuscripta Math., 124 (2007), 139. doi: 10.1007/s00229-007-0107-1.

[15]

S. Hofmann, J. L. Lewis, $L^2$ solvability and representation by caloric layer potentials in time-varying domains,, Ann. of Math., 144 (1996), 349. doi: 10.2307/2118595.

[16]

S. Hofmann, K. Nyström, Dirichlet problems for a nonstationary linearized system of Navier-Stokes equations in non-cylindrical domains,, Methods Appl. Anal., 9 (2002), 13.

[17]

M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems,, Princeton University Press: Princeton, (1983).

[18]

S. Kim, Gaussian estimates for fundamental solutions of second order parabolic systems with time-independent coefficients,, Trans. Amer. Math. Soc., 360 (2008), 6031. doi: 10.1090/S0002-9947-08-04485-1.

[19]

N. V. Krylov, Parabolic and elliptic equations with VMO coefficients,, Comm. Partial Differential Equations, 32 (2007), 453. doi: 10.1080/03605300600781626.

[20]

O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type,, American Mathematical Society: Providence, (1967).

[21]

J. L. Lewis, M. A. M. Murray, The method of layer potentials for the heat equation in time-varying domains,, Mem. Amer. Math. Soc., 114 (1995). doi: 10.1090/memo/0545.

[22]

G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific Publishing Co., (1996).

[23]

W. Littman, G. Stampacchia, H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients,, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43.

[24]

J. Moser, A Harnack inequality for parabolic differential equations,, Comm. Pure Appl. Math., 17 (1964), 101.

[25]

J. Nash, Continuity of solutions of parabolic and elliptic equations,, Amer. J. Math., 80 (1958), 931.

[26]

K. Nyström, The Dirichlet problem for second order parabolic operators,, Indiana Univ. Math. J., 46 (1997), 183. doi: 10.1512/iumj.1997.46.1277.

[27]

K. Nyström, On area integral estimates for solutions to parabolic systems in time-varying and non-smooth cylinders,, Trans. Amer. Math. Soc., 360 (2008), 2987. doi: 10.1090/S0002-9947-07-04328-0.

[28]

F. O. Porper, S. D. Eidel'man, Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them,, (Russian) Uspekhi Mat. Nauk, 39 (1984), 107.

[29]

J. Rivera-Noriega, Absolute continuity of parabolic measure and area integral estimates in non-cylindrical domains,, Indiana Univ. Math. J., 52 (2003), 477. doi: 10.1512/iumj.2003.52.2210.

[30]

M. Struwe, On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems,, Manuscripta Math., 35 (1981), 125. doi: 10.1007/BF01168452.

[1]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[2]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[3]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

[4]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[5]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[6]

Mourad Choulli. Local boundedness property for parabolic BVP's and the Gaussian upper bound for their Green functions. Evolution Equations & Control Theory, 2015, 4 (1) : 61-67. doi: 10.3934/eect.2015.4.61

[7]

Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks & Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167

[8]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[9]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

[10]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[11]

Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767

[12]

Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure & Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657

[13]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[14]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[15]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[16]

Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527

[17]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[18]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[19]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[20]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]