July  2013, 12(4): 1783-1812. doi: 10.3934/cpaa.2013.12.1783

On existence and uniqueness classes for the Cauchy problem for parabolic equations of the p-Laplace type

1. 

Computational Aeroacoustics Laboratory, Keldysh Institute of Applied Mathematics, Moscow 125047, Russian Federation

2. 

Department of Mathematics, Vladimir State University, Vladimir 600000, Russian Federation

Received  April 2012 Revised  June 2012 Published  November 2012

We prove the existence and uniqueness of global solutions to the Cauchy problem for a class of parabolic equations of the p-Laplace type. In the singular case $p<2$ there are no restrictions on the behaviour of solutions and initial data at infinity. In the degenerate case $p>2$ we impose a restriction on growth of solutions at infinity to obtain global existence and uniqueness. This restriction is given in terms of weighted energy classes with power-like weights.
Citation: Mikhail D. Surnachev, Vasily V. Zhikov. On existence and uniqueness classes for the Cauchy problem for parabolic equations of the p-Laplace type. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1783-1812. doi: 10.3934/cpaa.2013.12.1783
References:
[1]

Yu. A. Alkhutov, S. N. Antontsev and V. V. Zhikov, Parabolic equations with variable order of nonlinearity,, Zb. Prats' Inst. Mat. NAN Ukr., 6 (2009), 23. Google Scholar

[2]

Yu. A. Alkhutov and V. V. Zhikov, Existence theorems for solutions of parabolic equations with variable order of nonlinearity,, Proceedings of the Steklov Institute of Mathematics, 270 (2010), 15. doi: 10.1134/S0081543810030028. Google Scholar

[3]

D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation,, Trans. Amer. Math. Soc., 380 (1983), 351. doi: 10.1090/S0002-9947-1983-0712265-1. Google Scholar

[4]

Philippe Bénilan, Michael Crandall and Michel Pierre, Solutions of the Porous Medium Equation in $\mathbbR^n$ under optimal conditions on initial values,, Indiana Univ. Math. J., 33 (1984), 51. doi: 10.1512/iumj.1984.33.33003. Google Scholar

[5]

B. E. J. Dahlberg and C. E. Kenig, Nonnegative solutions of the porous medium equation,, Comm. Partial Differential Equations, 9 (1984), 409. doi: 10.1080/03605308408820336. Google Scholar

[6]

E. DiBenedetto, "Degenerate Parabolic Equations,'', Springer, (1993). Google Scholar

[7]

E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation,, Trans. AMS, 314 (1989), 187. doi: 10.1090/S0002-9947-1989-0962278-5. Google Scholar

[8]

E. DiBenedetto and M. A. Herrero, Non negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1,, Arch. Rational Mech. Anal., 111 (1990), 225. doi: 10.1007/BF00400111. Google Scholar

[9]

A. S. Kalashnikov, The Cauchy problem in classes of increasing functions for certain quasi-linear degenerate parabolic equations of the second order,, Differencial'nye Uravnenija, 9 (1973), 682. Google Scholar

[10]

A. S. Kalashnikov, Uniqueness conditions for the generalized solutions of the Cauchy problem for a class of quasi-linear degenerate parabolic equations,, Differencial'nye Uravnenija, 9 (1973), 2207. Google Scholar

[11]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations of Parabolic Type,'', Translations of Mathematical Monographs {\bf 23}, 23 (1968). Google Scholar

[12]

J.-L. Lions, "Quelques méthodes de résolution des problémes aux limites non linéires,'', Dunod, (1969). Google Scholar

[13]

V. V. Zhikov and S. E. Pastukhova, Parabolic lemmas on compensated compactness and their applications,, Dokl. Math., 81 (2010), 227. doi: 10.1134/S1064562410020171. Google Scholar

[14]

V. V. Zhikov and S. E. Pastukhova, Lemmas on compensated compactness in elliptic and parabolic equations,, Proceedings of the Steklov Institute of Mathematics, 270 (2010), 104. doi: 10.1134/S0081543810030089. Google Scholar

show all references

References:
[1]

Yu. A. Alkhutov, S. N. Antontsev and V. V. Zhikov, Parabolic equations with variable order of nonlinearity,, Zb. Prats' Inst. Mat. NAN Ukr., 6 (2009), 23. Google Scholar

[2]

Yu. A. Alkhutov and V. V. Zhikov, Existence theorems for solutions of parabolic equations with variable order of nonlinearity,, Proceedings of the Steklov Institute of Mathematics, 270 (2010), 15. doi: 10.1134/S0081543810030028. Google Scholar

[3]

D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation,, Trans. Amer. Math. Soc., 380 (1983), 351. doi: 10.1090/S0002-9947-1983-0712265-1. Google Scholar

[4]

Philippe Bénilan, Michael Crandall and Michel Pierre, Solutions of the Porous Medium Equation in $\mathbbR^n$ under optimal conditions on initial values,, Indiana Univ. Math. J., 33 (1984), 51. doi: 10.1512/iumj.1984.33.33003. Google Scholar

[5]

B. E. J. Dahlberg and C. E. Kenig, Nonnegative solutions of the porous medium equation,, Comm. Partial Differential Equations, 9 (1984), 409. doi: 10.1080/03605308408820336. Google Scholar

[6]

E. DiBenedetto, "Degenerate Parabolic Equations,'', Springer, (1993). Google Scholar

[7]

E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation,, Trans. AMS, 314 (1989), 187. doi: 10.1090/S0002-9947-1989-0962278-5. Google Scholar

[8]

E. DiBenedetto and M. A. Herrero, Non negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1,, Arch. Rational Mech. Anal., 111 (1990), 225. doi: 10.1007/BF00400111. Google Scholar

[9]

A. S. Kalashnikov, The Cauchy problem in classes of increasing functions for certain quasi-linear degenerate parabolic equations of the second order,, Differencial'nye Uravnenija, 9 (1973), 682. Google Scholar

[10]

A. S. Kalashnikov, Uniqueness conditions for the generalized solutions of the Cauchy problem for a class of quasi-linear degenerate parabolic equations,, Differencial'nye Uravnenija, 9 (1973), 2207. Google Scholar

[11]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations of Parabolic Type,'', Translations of Mathematical Monographs {\bf 23}, 23 (1968). Google Scholar

[12]

J.-L. Lions, "Quelques méthodes de résolution des problémes aux limites non linéires,'', Dunod, (1969). Google Scholar

[13]

V. V. Zhikov and S. E. Pastukhova, Parabolic lemmas on compensated compactness and their applications,, Dokl. Math., 81 (2010), 227. doi: 10.1134/S1064562410020171. Google Scholar

[14]

V. V. Zhikov and S. E. Pastukhova, Lemmas on compensated compactness in elliptic and parabolic equations,, Proceedings of the Steklov Institute of Mathematics, 270 (2010), 104. doi: 10.1134/S0081543810030089. Google Scholar

[1]

Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063

[2]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[3]

Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130

[4]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[5]

Dimitri Mugnai. Bounce on a p-Laplacian. Communications on Pure & Applied Analysis, 2003, 2 (3) : 371-379. doi: 10.3934/cpaa.2003.2.371

[6]

CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional p-Laplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99-114. doi: 10.3934/cpaa.2017004

[7]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[8]

Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed p-Laplacian problem with Neumann condition. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 595-606. doi: 10.3934/dcds.2005.12.595

[9]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[10]

Bernd Kawohl, Jiří Horák. On the geometry of the p-Laplacian operator. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 799-813. doi: 10.3934/dcdss.2017040

[11]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[12]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[13]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[14]

Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure & Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475

[15]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[16]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Robin problems for the p-Laplacian with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 287-295. doi: 10.3934/dcdss.2019020

[17]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[18]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Positive solutions for p-Laplacian equations with concave terms. Conference Publications, 2011, 2011 (Special) : 922-930. doi: 10.3934/proc.2011.2011.922

[19]

Shanming Ji, Yutian Li, Rui Huang, Xuejing Yin. Singular periodic solutions for the p-laplacian ina punctured domain. Communications on Pure & Applied Analysis, 2017, 16 (2) : 373-392. doi: 10.3934/cpaa.2017019

[20]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]