May  2013, 12(3): 1299-1306. doi: 10.3934/cpaa.2013.12.1299

An anisotropic regularity criterion for the 3D Navier-Stokes equations

1. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P. R.

2. 

Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

Received  January 2012 Revised  June 2012 Published  September 2012

In this paper, we establish an anisotropic regularity criterion for the 3D incompressible Navier-Stokes equations. It is proved that a weak solution $u$ is regular on $[0,T]$, provided $\frac{\partial u_3}{\partial x_3} \in L^{t_1}(0,T;L^{s_1}(R^3))$, with $\frac{2}{t_1}+\frac{3}{s_1}\leq 2$, $s_1\in(\frac{3}{2},+\infty]$ and $\nabla_h u_3 \in L^{t_2}(0, T; L^{s_2}(R^3))$, with either $\frac{2}{t_2}+\frac{3}{s_2}\leq \frac{19}{12}+\frac{1}{2s_2}$, $s_2\in(\frac{30}{19},3]$ or $ \frac{2}{t_2}+\frac{3}{s_2}\leq \frac{3}{2}+\frac{3}{4s_2}$, $s_2\in(3,+\infty]$. Our result in fact improves a regularity criterion of Zhou and Pokorný [Nonlinearity 23 (2010), 1097--1107].
Citation: Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299
References:
[1]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193. doi: 10.1007/BF02547354. Google Scholar

[2]

E. Hopf, Über die Anfangwertaufgaben für die hydromischen Grundgleichungen,, Math. Nachr., 4 (1951), 213. doi: 10.1002/mana.3210040121. Google Scholar

[3]

G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173. doi: 10.1007/BF02410664. Google Scholar

[4]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rat. Mech. Anal., 9 (1962), 187. doi: 10.1007/BF00253344. Google Scholar

[5]

L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for parabolic equations,, Arch. Rat. Mech. Anal., 169 (2003), 147. doi: 10.1007/s00205-003-0263-8. Google Scholar

[6]

H. Beirão da Veiga, A new regularity class for the Navier-stokes equations in $\mathbfR^n$,, Chin. Ann. Math., 16 (1995), 407. Google Scholar

[7]

J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity,, in, (2002), 163. Google Scholar

[8]

Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations,, J. Math. Pures Appl., 84 (2005), 1496. doi: 10.1016/j.matpur.2005.07.003. Google Scholar

[9]

Y. Zhou, A new regularity result for the Navier-Stokes equations in terms of the gradient of one velocity component,, Methods Appl. Anal., 9 (2002), 563. Google Scholar

[10]

M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations,, Electron. J. Diff. Eqns., 11 (2003), 1. Google Scholar

[11]

C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643. doi: 10.1512/iumj.2008.57.3719. Google Scholar

[12]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453. doi: 10.1088/0951-7715/19/2/012. Google Scholar

[13]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2395919. Google Scholar

[14]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3268589. Google Scholar

[15]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097. doi: 10.1088/0951-7715/23/5/004. Google Scholar

show all references

References:
[1]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193. doi: 10.1007/BF02547354. Google Scholar

[2]

E. Hopf, Über die Anfangwertaufgaben für die hydromischen Grundgleichungen,, Math. Nachr., 4 (1951), 213. doi: 10.1002/mana.3210040121. Google Scholar

[3]

G. Prodi, Un teorema di unicità per el equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173. doi: 10.1007/BF02410664. Google Scholar

[4]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rat. Mech. Anal., 9 (1962), 187. doi: 10.1007/BF00253344. Google Scholar

[5]

L. Escauriaza, G. Seregin and V. Šverák, Backward uniqueness for parabolic equations,, Arch. Rat. Mech. Anal., 169 (2003), 147. doi: 10.1007/s00205-003-0263-8. Google Scholar

[6]

H. Beirão da Veiga, A new regularity class for the Navier-stokes equations in $\mathbfR^n$,, Chin. Ann. Math., 16 (1995), 407. Google Scholar

[7]

J. Neustupa, A. Novotný and P. Penel, An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity,, in, (2002), 163. Google Scholar

[8]

Y. Zhou, A new regularity criterion for weak solutions to the Navier-Stokes equations,, J. Math. Pures Appl., 84 (2005), 1496. doi: 10.1016/j.matpur.2005.07.003. Google Scholar

[9]

Y. Zhou, A new regularity result for the Navier-Stokes equations in terms of the gradient of one velocity component,, Methods Appl. Anal., 9 (2002), 563. Google Scholar

[10]

M. Pokorný, On the result of He concerning the smoothness of solutions to the Navier-Stokes equations,, Electron. J. Diff. Eqns., 11 (2003), 1. Google Scholar

[11]

C. Cao and E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations,, Indiana Univ. Math. J., 57 (2008), 2643. doi: 10.1512/iumj.2008.57.3719. Google Scholar

[12]

I. Kukavica and M. Ziane, One component regularity for the Navier-Stokes equations,, Nonlinearity, 19 (2006), 453. doi: 10.1088/0951-7715/19/2/012. Google Scholar

[13]

I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2395919. Google Scholar

[14]

Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3268589. Google Scholar

[15]

Y. Zhou and M. Pokorný, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097. doi: 10.1088/0951-7715/23/5/004. Google Scholar

[1]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[2]

Zujin Zhang. A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Communications on Pure & Applied Analysis, 2013, 12 (1) : 117-124. doi: 10.3934/cpaa.2013.12.117

[3]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[4]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[5]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[6]

Patrick Penel, Milan Pokorný. Improvement of some anisotropic regularity criteria for the Navier--Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1401-1407. doi: 10.3934/dcdss.2013.6.1401

[7]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[8]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[9]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[10]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[11]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[12]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[13]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[14]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[15]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[16]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[17]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[18]

Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure & Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353

[19]

Wendong Wang, Liqun Zhang, Zhifei Zhang. On the interior regularity criteria of the 3-D navier-stokes equations involving two velocity components. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2609-2627. doi: 10.3934/dcds.2018110

[20]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]