January  2013, 12(1): 1-58. doi: 10.3934/cpaa.2013.12.1

Laplacians on a family of quadratic Julia sets II

1. 

Mathematics Department, Yale University, New Haven, CT 06510, United States

2. 

Mathematics Department, New York University, New York, NY 10012, United States

3. 

Mathematics Department, Malott Hall, Cornell Univeristy, Ithaca, NY 14853, United States

Received  June 2011 Revised  May 2012 Published  September 2012

This paper continues the work started in [4] to construct $P$-invariant Laplacians on the Julia sets of $P(z) = z^2 + c$ for $c$ in the interior of the Mandelbrot set, and to study the spectra of these Laplacians numerically. We are able to deal with a larger class of Julia sets and give a systematic method that reduces the construction of a $P$-invariant energy to the solution of nonlinear finite dimensional eigenvalue problem. We give the complete details for three examples, a dendrite, the airplane, and the Basilica-in-Rabbit. We also study the spectra of Laplacians on covering spaces and infinite blowups of the Julia sets. In particular, for a generic infinite blowups there is pure point spectrum, while for periodic covering spaces the spectrum is a mixture of discrete and continuous parts.
Citation: Tarik Aougab, Stella Chuyue Dong, Robert S. Strichartz. Laplacians on a family of quadratic Julia sets II. Communications on Pure & Applied Analysis, 2013, 12 (1) : 1-58. doi: 10.3934/cpaa.2013.12.1
References:
[1]

S. Constantin, R. Strichartz and M. Wheeler, Analysis of the Laplacian and spectral operators on the Vicsek set,, Comm. Pure Appl. Anal, 10 (2011), 1. Google Scholar

[2]

Stella C. Dong, Laplacians on a family of quadratic Julia sets II,, \url{http://www.math.cornell.edu/ cdong01/}, (2010). Google Scholar

[3]

A. Douady, Descriptions of compact sets in $\mathbbC$,, in, (1993), 429. Google Scholar

[4]

T. Flock and R. Strichartz, Laplacians on a family of Julia sets I,, Trans. Amer. Math. Soc., (). Google Scholar

[5]

Jun Kigami, "Analysis on Fractals,", volume 143 of Cambridge Tracts in Mathematics, (2001). Google Scholar

[6]

Jun Kigami and Michel L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals,, Comm. Math. Phys., 158 (1993), 93. Google Scholar

[7]

J. Milnor, Periodic orbits, externals rays and the Mandelbrot set: an expository account,, Geometrie Complexe et Systemes Dynamiques, 261 (2000), 277. Google Scholar

[8]

Luke G. Rogers and Alexander Teplyaev, Laplacians on the basilica Julia set,, Comm. Pure Appl. Anal., 9 (2010), 211. Google Scholar

[9]

R. Strichartz, Fractals in the large,, Can. J. Math., 50 (1998), 638. Google Scholar

[10]

Robert S. Strichartz, "Differential Equations on Fractals, A Tutorial,'', Princeton University Press, (2006). Google Scholar

[11]

A. Teplyaev, Spectral analysis on infinite Sierpinski gaskets,, J. Functional Anal., 159 (1998), 537. Google Scholar

show all references

References:
[1]

S. Constantin, R. Strichartz and M. Wheeler, Analysis of the Laplacian and spectral operators on the Vicsek set,, Comm. Pure Appl. Anal, 10 (2011), 1. Google Scholar

[2]

Stella C. Dong, Laplacians on a family of quadratic Julia sets II,, \url{http://www.math.cornell.edu/ cdong01/}, (2010). Google Scholar

[3]

A. Douady, Descriptions of compact sets in $\mathbbC$,, in, (1993), 429. Google Scholar

[4]

T. Flock and R. Strichartz, Laplacians on a family of Julia sets I,, Trans. Amer. Math. Soc., (). Google Scholar

[5]

Jun Kigami, "Analysis on Fractals,", volume 143 of Cambridge Tracts in Mathematics, (2001). Google Scholar

[6]

Jun Kigami and Michel L. Lapidus, Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals,, Comm. Math. Phys., 158 (1993), 93. Google Scholar

[7]

J. Milnor, Periodic orbits, externals rays and the Mandelbrot set: an expository account,, Geometrie Complexe et Systemes Dynamiques, 261 (2000), 277. Google Scholar

[8]

Luke G. Rogers and Alexander Teplyaev, Laplacians on the basilica Julia set,, Comm. Pure Appl. Anal., 9 (2010), 211. Google Scholar

[9]

R. Strichartz, Fractals in the large,, Can. J. Math., 50 (1998), 638. Google Scholar

[10]

Robert S. Strichartz, "Differential Equations on Fractals, A Tutorial,'', Princeton University Press, (2006). Google Scholar

[11]

A. Teplyaev, Spectral analysis on infinite Sierpinski gaskets,, J. Functional Anal., 159 (1998), 537. Google Scholar

[1]

Luke G. Rogers, Alexander Teplyaev. Laplacians on the basilica Julia set. Communications on Pure & Applied Analysis, 2010, 9 (1) : 211-231. doi: 10.3934/cpaa.2010.9.211

[2]

Koh Katagata. Quartic Julia sets including any two copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2103-2112. doi: 10.3934/dcds.2016.36.2103

[3]

Luiz Henrique de Figueiredo, Diego Nehab, Jorge Stolfi, João Batista S. de Oliveira. Rigorous bounds for polynomial Julia sets. Journal of Computational Dynamics, 2016, 3 (2) : 113-137. doi: 10.3934/jcd.2016006

[4]

Robert L. Devaney, Daniel M. Look. Buried Sierpinski curve Julia sets. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1035-1046. doi: 10.3934/dcds.2005.13.1035

[5]

Danilo Antonio Caprio. A class of adding machines and Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5951-5970. doi: 10.3934/dcds.2016061

[6]

Nathaniel D. Emerson. Dynamics of polynomials with disconnected Julia sets. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 801-834. doi: 10.3934/dcds.2003.9.801

[7]

Tien-Cuong Dinh, Nessim Sibony. Rigidity of Julia sets for Hénon type maps. Journal of Modern Dynamics, 2014, 8 (3&4) : 499-548. doi: 10.3934/jmd.2014.8.499

[8]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[9]

Ali Messaoudi, Rafael Asmat Uceda. Stochastic adding machine and $2$-dimensional Julia sets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5247-5269. doi: 10.3934/dcds.2014.34.5247

[10]

Ranjit Bhattacharjee, Robert L. Devaney, R.E. Lee Deville, Krešimir Josić, Monica Moreno-Rocha. Accessible points in the Julia sets of stable exponentials. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 299-318. doi: 10.3934/dcdsb.2001.1.299

[11]

Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217

[12]

Weiyuan Qiu, Fei Yang, Yongcheng Yin. Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3375-3416. doi: 10.3934/dcds.2016.36.3375

[13]

Rich Stankewitz, Hiroki Sumi. Random backward iteration algorithm for Julia sets of rational semigroups. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2165-2175. doi: 10.3934/dcds.2015.35.2165

[14]

Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079

[15]

Alexander Blokh, Lex Oversteegen, Vladlen Timorin. Non-degenerate locally connected models for plane continua and Julia sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5781-5795. doi: 10.3934/dcds.2017251

[16]

Hiroki Sumi, Mariusz Urbański. Measures and dimensions of Julia sets of semi-hyperbolic rational semigroups. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 313-363. doi: 10.3934/dcds.2011.30.313

[17]

Mark Comerford. Non-autonomous Julia sets with measurable invariant sequences of line fields. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 629-642. doi: 10.3934/dcds.2013.33.629

[18]

Hiroki Sumi. Dynamics of postcritically bounded polynomial semigroups I: Connected components of the Julia sets. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1205-1244. doi: 10.3934/dcds.2011.29.1205

[19]

Youming Wang, Fei Yang, Song Zhang, Liangwen Liao. Escape quartered theorem and the connectivity of the Julia sets of a family of rational maps. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5185-5206. doi: 10.3934/dcds.2019211

[20]

Jun Hu, Oleg Muzician, Yingqing Xiao. Dynamics of regularly ramified rational maps: Ⅰ. Julia sets of maps in one-parameter families. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3189-3221. doi: 10.3934/dcds.2018139

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (5)

[Back to Top]