March  2012, 11(2): 747-761. doi: 10.3934/cpaa.2012.11.747

On the regularity of solutions to the Navier-Stokes equations

1. 

Politecnico di Milano - Dipartimento di Matematica "F. Brioschi", Via Bonardi 9, 20133 Milano

Received  November 2010 Revised  April 2011 Published  October 2011

This article is concerned with the incompressible Navier-Stokes equations in a three-dimensional domain. A criterion of Prodi-Serrin type up to the boundary for global existence of strong solutions is established.
Citation: Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747
References:
[1]

H. Beirão da Veiga, Remarks on the smoothness of the $L^\infty(0,T;L^3)$ solutions of the 3-D Navier-Stokes equations,, Portugal. Math., 54 (1997), 381. Google Scholar

[2]

C. Bjorland and A. Vasseur, Weak in space, log in time improvement of the Ladyž zenskaja-Prodi-Serrin criteria,, J. Math. Fluid Mech., (). Google Scholar

[3]

C. H. Chan and A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations,, Methods Appl. Anal., 14 (2007), 197. Google Scholar

[4]

L. Escauriaza, G. Seregin and V. Šverák, $L_{3,\infty}$ -solutions of the Navier-Stokes equations and backward uniqueness,, Russian Math. Surveys, 58 (2003), 211. Google Scholar

[5]

C. Foias, C. Guillope and R. Temam, New a priori estimates for Navier-Stokes equations in dimension 3,, Comm. Partial Differential Equations, 6 (1981), 329. Google Scholar

[6]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1950), 213. Google Scholar

[7]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes equations,, J. Differential Equations, 62 (1986), 186. Google Scholar

[8]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193. Google Scholar

[9]

S. Montgomery-Smith, Conditions implying regularity of the three dimensional Navier-Stokes equation,, Appl. Math., 50 (2005), 451. Google Scholar

[10]

J. Nečas, M. Ruzička and V. Šverák, On Leray's self-similar solutions of the Navier-Stokes equations,, Acta Math., 176 (1996), 283. Google Scholar

[11]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173. Google Scholar

[12]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Ration. Mech. Anal., 9 (1962), 187. Google Scholar

[13]

H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces,, J. Evol. Equ., 1 (2001), 441. Google Scholar

[14]

H. Sohr, "The Navier-Stokes Euations,", Birkh\, (2001). Google Scholar

[15]

M. Struwe, On partial regularity results for the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 437. Google Scholar

[16]

S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations,, Manuscripta Math., 69 (1990), 237. Google Scholar

[17]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353. Google Scholar

[18]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,", CBMS-NSF Regional conference Series in Applied Mathematics, (1983). Google Scholar

[19]

R. Temam, "Navier-Stokes Equations,", AMS Chelsea Publishing, (2001). Google Scholar

show all references

References:
[1]

H. Beirão da Veiga, Remarks on the smoothness of the $L^\infty(0,T;L^3)$ solutions of the 3-D Navier-Stokes equations,, Portugal. Math., 54 (1997), 381. Google Scholar

[2]

C. Bjorland and A. Vasseur, Weak in space, log in time improvement of the Ladyž zenskaja-Prodi-Serrin criteria,, J. Math. Fluid Mech., (). Google Scholar

[3]

C. H. Chan and A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations,, Methods Appl. Anal., 14 (2007), 197. Google Scholar

[4]

L. Escauriaza, G. Seregin and V. Šverák, $L_{3,\infty}$ -solutions of the Navier-Stokes equations and backward uniqueness,, Russian Math. Surveys, 58 (2003), 211. Google Scholar

[5]

C. Foias, C. Guillope and R. Temam, New a priori estimates for Navier-Stokes equations in dimension 3,, Comm. Partial Differential Equations, 6 (1981), 329. Google Scholar

[6]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1950), 213. Google Scholar

[7]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes equations,, J. Differential Equations, 62 (1986), 186. Google Scholar

[8]

J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1934), 193. Google Scholar

[9]

S. Montgomery-Smith, Conditions implying regularity of the three dimensional Navier-Stokes equation,, Appl. Math., 50 (2005), 451. Google Scholar

[10]

J. Nečas, M. Ruzička and V. Šverák, On Leray's self-similar solutions of the Navier-Stokes equations,, Acta Math., 176 (1996), 283. Google Scholar

[11]

G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173. Google Scholar

[12]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Ration. Mech. Anal., 9 (1962), 187. Google Scholar

[13]

H. Sohr, A regularity class for the Navier-Stokes equations in Lorentz spaces,, J. Evol. Equ., 1 (2001), 441. Google Scholar

[14]

H. Sohr, "The Navier-Stokes Euations,", Birkh\, (2001). Google Scholar

[15]

M. Struwe, On partial regularity results for the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 437. Google Scholar

[16]

S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations,, Manuscripta Math., 69 (1990), 237. Google Scholar

[17]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353. Google Scholar

[18]

R. Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis,", CBMS-NSF Regional conference Series in Applied Mathematics, (1983). Google Scholar

[19]

R. Temam, "Navier-Stokes Equations,", AMS Chelsea Publishing, (2001). Google Scholar

[1]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[4]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[5]

Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033

[6]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[7]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[8]

Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090

[9]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[10]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[11]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[12]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[13]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[14]

Fang Li, Bo You, Yao Xu. Dynamics of weak solutions for the three dimensional Navier-Stokes equations with nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4267-4284. doi: 10.3934/dcdsb.2018137

[15]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[16]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[17]

Wendong Wang, Liqun Zhang, Zhifei Zhang. On the interior regularity criteria of the 3-D navier-stokes equations involving two velocity components. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2609-2627. doi: 10.3934/dcds.2018110

[18]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[19]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[20]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]