March  2012, 11(2): 475-500. doi: 10.3934/cpaa.2012.11.475

Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant

1. 

School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China

2. 

Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China

Received  August 2010 Revised  January 2011 Published  October 2011

We realize the best asymptotic profile for the solutions to the nonisentropic $p$-system with damping on quadrant is a particular solution of the IBVP for the corresponding nonlinear parabolic equation with special initial data, and we further show the convergence rates to this particular asymptotic profile. This rates are same to that for the isentropic case obtained by H. Ma and M. Mei (J. Differential Equations 249 (2010), 446--484).
Citation: Shifeng Geng, Zhen Wang. Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant. Communications on Pure & Applied Analysis, 2012, 11 (2) : 475-500. doi: 10.3934/cpaa.2012.11.475
References:
[1]

S. Geng and Z. Wang, Convergence rates to nonlinear diffusion waves for solutions to the system of compressible adiabatic flow through porous media,, Comm. Partial Differential Equations, (2011), 850. doi: 10.1080/03605302.2010.520052. Google Scholar

[2]

L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,, Comm. Math. Phys., 143 (1992), 599. doi: 10.1007/BF02099268. Google Scholar

[3]

L. Hsiao and T. Luo, Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media,, J. Differential Equations, 125 (1996), 329. doi: 10.1006/jdeq.1996.0034. Google Scholar

[4]

L. Hsiao and D. Serre, Large-time behavior of solutions for the system of compressible adiabatic flow through porous media,, Chinese Ann. Math. Ser. B, 16 (1995), 431. Google Scholar

[5]

L. Hsiao and D. Serre, Global existence of solutions for the system of compressible adiabatic flow through porous media,, SIAM J. Math. Anal., 27 (1996), 70. doi: 10.1137/S0036141094267078. Google Scholar

[6]

H. Ma and M. Mei, Best asymptotic profile for linear damped $p$-system with boundary effect,, J. Differential Equations, 249 (2010), 446. doi: 10.1016/j.jde.2010.04.008. Google Scholar

[7]

P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping,, J. Math. Fluid Mech., 7 (2005). doi: 10.1007/s00021-005-0155-9. Google Scholar

[8]

P. Marcati and K. Nishihara, The $L^p$-$L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media,, J. Differential Equations, 191 (2003), 445. doi: 10.1016/S0022-0396(03)00026-3. Google Scholar

[9]

P. Marcati and R. Pan, On the diffusive profiles for the system of compressible adiabatic flow through porous media,, SIAM J. Math. Anal., 33 (2001), 790. doi: 10.1137/S0036141099364401. Google Scholar

[10]

A. Matsumura, Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first-order dissipation,, Publ. Res. Inst. Math. Sci., 13 (): 349. doi: 10.2977/prims/1195189813. Google Scholar

[11]

M. Mei, Best asymptotic profile for hyperbolic $p$-system with damping,, SIAM J. Math. Anal., 42 (2010), 1. doi: 10.1137/090756594. Google Scholar

[12]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping,, J. Differential Equations, 131 (1996), 171. doi: 10.1006/jdeq.1996.0159. Google Scholar

[13]

K. Nishihara, Asymptotics toward the diffusion wave for a one-dimensional compressible flow through porous media,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 177. doi: 10.1017/S0308210500002341. Google Scholar

[14]

K. Nishihara and M. Nishikawa, Asymptotic behavior of solutions to the system of compressible adiabatic flow through porous media,, SIAM J. Math. Anal., 33 (2001), 216. doi: 10.1137/S003614109936467X. Google Scholar

[15]

K. Nishihara, W. Wang and T. Yang, $L^p$-convergence rate to nonlinear diffusion waves for $p$-system with damping,, J. Differential Equations, 161 (2000), 191. doi: 10.1006/jdeq.1999.3703. Google Scholar

[16]

R. Pan, Boundary effects and large time behavior for the system of compressible adiabatic flow through porous media,, Michigan Math. J., 49 (2001), 519. doi: 10.1307/mmj/1012409969. Google Scholar

[17]

R. Pan, Darcy's law as long-time limit of adiabatic porous media flow,, J. Differential Equations, 220 (2006), 121. doi: 10.1016/j.jde.2004.10.013. Google Scholar

[18]

B. Said-Houari, Convergence to strong nonlinear diffusion waves for solutions to $p$-system with damping,, J. Differential Equations, 247 (2009), 917. doi: 10.1016/j.jde.2009.04.011. Google Scholar

[19]

H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of $p$-system with damping,, J. Differential Equations, 174 (2001), 200. doi: 10.1006/jdeq.2000.3936. Google Scholar

[20]

C. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to $p$-system with damping,, Sci. China Ser. A, 46 (2003), 562. doi: 10.1007/BF02884028. Google Scholar

show all references

References:
[1]

S. Geng and Z. Wang, Convergence rates to nonlinear diffusion waves for solutions to the system of compressible adiabatic flow through porous media,, Comm. Partial Differential Equations, (2011), 850. doi: 10.1080/03605302.2010.520052. Google Scholar

[2]

L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping,, Comm. Math. Phys., 143 (1992), 599. doi: 10.1007/BF02099268. Google Scholar

[3]

L. Hsiao and T. Luo, Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media,, J. Differential Equations, 125 (1996), 329. doi: 10.1006/jdeq.1996.0034. Google Scholar

[4]

L. Hsiao and D. Serre, Large-time behavior of solutions for the system of compressible adiabatic flow through porous media,, Chinese Ann. Math. Ser. B, 16 (1995), 431. Google Scholar

[5]

L. Hsiao and D. Serre, Global existence of solutions for the system of compressible adiabatic flow through porous media,, SIAM J. Math. Anal., 27 (1996), 70. doi: 10.1137/S0036141094267078. Google Scholar

[6]

H. Ma and M. Mei, Best asymptotic profile for linear damped $p$-system with boundary effect,, J. Differential Equations, 249 (2010), 446. doi: 10.1016/j.jde.2010.04.008. Google Scholar

[7]

P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping,, J. Math. Fluid Mech., 7 (2005). doi: 10.1007/s00021-005-0155-9. Google Scholar

[8]

P. Marcati and K. Nishihara, The $L^p$-$L^q$ estimates of solutions to one-dimensional damped wave equations and their application to the compressible flow through porous media,, J. Differential Equations, 191 (2003), 445. doi: 10.1016/S0022-0396(03)00026-3. Google Scholar

[9]

P. Marcati and R. Pan, On the diffusive profiles for the system of compressible adiabatic flow through porous media,, SIAM J. Math. Anal., 33 (2001), 790. doi: 10.1137/S0036141099364401. Google Scholar

[10]

A. Matsumura, Global existence and asymptotics of the solutions of the second-order quasilinear hyperbolic equations with the first-order dissipation,, Publ. Res. Inst. Math. Sci., 13 (): 349. doi: 10.2977/prims/1195189813. Google Scholar

[11]

M. Mei, Best asymptotic profile for hyperbolic $p$-system with damping,, SIAM J. Math. Anal., 42 (2010), 1. doi: 10.1137/090756594. Google Scholar

[12]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping,, J. Differential Equations, 131 (1996), 171. doi: 10.1006/jdeq.1996.0159. Google Scholar

[13]

K. Nishihara, Asymptotics toward the diffusion wave for a one-dimensional compressible flow through porous media,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 177. doi: 10.1017/S0308210500002341. Google Scholar

[14]

K. Nishihara and M. Nishikawa, Asymptotic behavior of solutions to the system of compressible adiabatic flow through porous media,, SIAM J. Math. Anal., 33 (2001), 216. doi: 10.1137/S003614109936467X. Google Scholar

[15]

K. Nishihara, W. Wang and T. Yang, $L^p$-convergence rate to nonlinear diffusion waves for $p$-system with damping,, J. Differential Equations, 161 (2000), 191. doi: 10.1006/jdeq.1999.3703. Google Scholar

[16]

R. Pan, Boundary effects and large time behavior for the system of compressible adiabatic flow through porous media,, Michigan Math. J., 49 (2001), 519. doi: 10.1307/mmj/1012409969. Google Scholar

[17]

R. Pan, Darcy's law as long-time limit of adiabatic porous media flow,, J. Differential Equations, 220 (2006), 121. doi: 10.1016/j.jde.2004.10.013. Google Scholar

[18]

B. Said-Houari, Convergence to strong nonlinear diffusion waves for solutions to $p$-system with damping,, J. Differential Equations, 247 (2009), 917. doi: 10.1016/j.jde.2009.04.011. Google Scholar

[19]

H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of $p$-system with damping,, J. Differential Equations, 174 (2001), 200. doi: 10.1006/jdeq.2000.3936. Google Scholar

[20]

C. Zhu, Convergence rates to nonlinear diffusion waves for weak entropy solutions to $p$-system with damping,, Sci. China Ser. A, 46 (2003), 562. doi: 10.1007/BF02884028. Google Scholar

[1]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[2]

Ciprian G. Gal, M. Grasselli. On the asymptotic behavior of the Caginalp system with dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 689-710. doi: 10.3934/cpaa.2009.8.689

[3]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic & Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[4]

Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083

[5]

Yinnian He, Yi Li. Asymptotic behavior of linearized viscoelastic flow problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 843-856. doi: 10.3934/dcdsb.2008.10.843

[6]

Monica Conti, Stefania Gatti, Alain Miranville. Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 485-505. doi: 10.3934/dcdss.2012.5.485

[7]

L. Olsen. Rates of convergence towards the boundary of a self-similar set. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 799-811. doi: 10.3934/dcds.2007.19.799

[8]

Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865

[9]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[10]

Mina Jiang, Changjiang Zhu. Convergence rates to nonlinear diffusion waves for $p$-system with nonlinear damping on quadrant. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 887-918. doi: 10.3934/dcds.2009.23.887

[11]

Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic & Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857

[12]

Chiu-Ya Lan, Chi-Kun Lin. Asymptotic behavior of the compressible viscous potential fluid: Renormalization group approach. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 161-188. doi: 10.3934/dcds.2004.11.161

[13]

Jian Yang. Asymptotic behavior of solutions for competitive models with a free boundary. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3253-3276. doi: 10.3934/dcds.2015.35.3253

[14]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[15]

Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779

[16]

Sergio Frigeri. Asymptotic behavior of a hyperbolic system arising in ferroelectricity. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1393-1414. doi: 10.3934/cpaa.2008.7.1393

[17]

Yongqin Liu, Shuichi Kawashima. Asymptotic behavior of solutions to a model system of a radiating gas. Communications on Pure & Applied Analysis, 2011, 10 (1) : 209-223. doi: 10.3934/cpaa.2011.10.209

[18]

Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok. Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences & Engineering, 2012, 9 (1) : 199-214. doi: 10.3934/mbe.2012.9.199

[19]

Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256

[20]

Matteo Bonforte, Jean Dolbeault, Matteo Muratori, Bruno Nazaret. Weighted fast diffusion equations (Part Ⅱ): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic & Related Models, 2017, 10 (1) : 61-91. doi: 10.3934/krm.2017003

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]