September  2012, 11(5): 2147-2156. doi: 10.3934/cpaa.2012.11.2147

Blow-up for the heat equation with a general memory boundary condition

1. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010

2. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, United States

Received  March 2011 Revised  November 2011 Published  March 2012

In this paper, we study the long-time behavior of nonnegative solutions of the heat equation with a general memory boundary condition. We first present conditions on the memory term for finite time blow-up. We then establish global existence results through both analytical and numerical methods. Finally, we show that under certain conditions blow-up occurs only on the boundary.
Citation: Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147
References:
[1]

J. R. Anderson, K. Deng and Z. Dong, Global solvability for the heat equation with boundary flux governed by nonlinear memory,, Quart. Appl. Math., 69 (2011), 759. doi: 10.1090/S0033-569X-2011-01238-X. Google Scholar

[2]

M. Ciarletta, A differential problem for heat equation with a boundary condition with memory,, Appl. Math. Letters, 10 (1997), 95. doi: 10.1016/S0893-9659(96)00118-8. Google Scholar

[3]

K. Deng and M. Xu, On solutions of a singular diffusion equation,, Nonlinear Anal., 41 (2000), 489. doi: 10.1016/S0362-546X(98)00292-2. Google Scholar

[4]

M. Fabrizio and A. Morro, A boundary condition with memory in electromagnetism,, Arch. Rational Mech. Anal., 136 (1996), 359. doi: 10.1007/BF02206624. Google Scholar

[5]

R. Ferreira, P. Groisman and J. D. Rossi, Numerical blow-up for a nonlinear problem with a nonlinear boundary condition,, Math. Models Methods Appl. Sci., 12 (2002), 461. doi: 10.1142/S021820250200174X. Google Scholar

[6]

B. Hu and H.-M. Yin, The profile near blowup time for solutions of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117. doi: 10.2307/2154944. Google Scholar

[7]

B. Hu and H.-M. Yin, Critical exponents for a system of heat equations coupled in a non-linear boundary condition,, Math. Methods Appl. Sci., 19 (1996), 1099. doi: 10.1002/(SICI)1099-1476(19960925)19:14<1099::AID-MMA780>3.0.CO;2-J. Google Scholar

[8]

H. A. Levine, S. Pamuk, B. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma,, Bull. Math. Biol., 63 (2001), 801. doi: 10.1006/bulm.2001.0240. Google Scholar

[9]

H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time,, J. Differential Equations, 16 (1974), 319. doi: 10.1016/0022-0396(74)90018-7. Google Scholar

[10]

J. López-Gómez, V. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition,, J. Differential Equations, 92 (1991), 384. Google Scholar

[11]

L. E. Payne and P. W. Schaefer, Bounds for blow-up time for the heat equation under nonlinear boundary conditions,, Proc. Royal Soc. Edinburgh Sect. A, 139 (2009), 1289. doi: 10.1017/S0308210508000802. Google Scholar

[12]

D. F. Rial and J. D. Rossi, Blow-up results and localization of blow-up points in an N-dimensional smooth domain,, Duke Math. J., 88 (1997), 391. doi: 10.1215/S0012-7094-97-08816-5. Google Scholar

[13]

W. Walter, On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition,, SIAM J. Math. Anal., 6 (1975), 85. doi: 10.1137/0506008. Google Scholar

[14]

M. X. Wang and Y. H. Wu, Global existence and blow up problems for quasilinear parabolic equations with nonlinear boundary conditions,, SIAM J. Math. Anal., 24 (1993), 1515. doi: 10.1137/0524085. Google Scholar

show all references

References:
[1]

J. R. Anderson, K. Deng and Z. Dong, Global solvability for the heat equation with boundary flux governed by nonlinear memory,, Quart. Appl. Math., 69 (2011), 759. doi: 10.1090/S0033-569X-2011-01238-X. Google Scholar

[2]

M. Ciarletta, A differential problem for heat equation with a boundary condition with memory,, Appl. Math. Letters, 10 (1997), 95. doi: 10.1016/S0893-9659(96)00118-8. Google Scholar

[3]

K. Deng and M. Xu, On solutions of a singular diffusion equation,, Nonlinear Anal., 41 (2000), 489. doi: 10.1016/S0362-546X(98)00292-2. Google Scholar

[4]

M. Fabrizio and A. Morro, A boundary condition with memory in electromagnetism,, Arch. Rational Mech. Anal., 136 (1996), 359. doi: 10.1007/BF02206624. Google Scholar

[5]

R. Ferreira, P. Groisman and J. D. Rossi, Numerical blow-up for a nonlinear problem with a nonlinear boundary condition,, Math. Models Methods Appl. Sci., 12 (2002), 461. doi: 10.1142/S021820250200174X. Google Scholar

[6]

B. Hu and H.-M. Yin, The profile near blowup time for solutions of the heat equation with a nonlinear boundary condition,, Trans. Amer. Math. Soc., 346 (1994), 117. doi: 10.2307/2154944. Google Scholar

[7]

B. Hu and H.-M. Yin, Critical exponents for a system of heat equations coupled in a non-linear boundary condition,, Math. Methods Appl. Sci., 19 (1996), 1099. doi: 10.1002/(SICI)1099-1476(19960925)19:14<1099::AID-MMA780>3.0.CO;2-J. Google Scholar

[8]

H. A. Levine, S. Pamuk, B. Sleeman and M. Nilsen-Hamilton, Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma,, Bull. Math. Biol., 63 (2001), 801. doi: 10.1006/bulm.2001.0240. Google Scholar

[9]

H. A. Levine and L. E. Payne, Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time,, J. Differential Equations, 16 (1974), 319. doi: 10.1016/0022-0396(74)90018-7. Google Scholar

[10]

J. López-Gómez, V. Márquez and N. Wolanski, Blow up results and localization of blow up points for the heat equation with a nonlinear boundary condition,, J. Differential Equations, 92 (1991), 384. Google Scholar

[11]

L. E. Payne and P. W. Schaefer, Bounds for blow-up time for the heat equation under nonlinear boundary conditions,, Proc. Royal Soc. Edinburgh Sect. A, 139 (2009), 1289. doi: 10.1017/S0308210508000802. Google Scholar

[12]

D. F. Rial and J. D. Rossi, Blow-up results and localization of blow-up points in an N-dimensional smooth domain,, Duke Math. J., 88 (1997), 391. doi: 10.1215/S0012-7094-97-08816-5. Google Scholar

[13]

W. Walter, On existence and nonexistence in the large of solutions of parabolic differential equations with a nonlinear boundary condition,, SIAM J. Math. Anal., 6 (1975), 85. doi: 10.1137/0506008. Google Scholar

[14]

M. X. Wang and Y. H. Wu, Global existence and blow up problems for quasilinear parabolic equations with nonlinear boundary conditions,, SIAM J. Math. Anal., 24 (1993), 1515. doi: 10.1137/0524085. Google Scholar

[1]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[2]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[3]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[4]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[5]

Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935

[6]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[7]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[8]

Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271

[9]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[10]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[11]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[12]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[13]

Mingzhu Wu, Zuodong Yang. Existence of boundary blow-up solutions for a class of quasiliner elliptic systems for the subcritical case. Communications on Pure & Applied Analysis, 2007, 6 (2) : 531-540. doi: 10.3934/cpaa.2007.6.531

[14]

Jorge García-Melián, Julio D. Rossi, José C. Sabina de Lis. Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities. Communications on Pure & Applied Analysis, 2016, 15 (2) : 549-562. doi: 10.3934/cpaa.2016.15.549

[15]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[16]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[17]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[18]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[19]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[20]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 233-255. doi: 10.3934/dcdss.2020013

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]