
Previous Article
On the Lagrangian averaged Euler equations: local wellposedness and blowup criterion
 CPAA Home
 This Issue

Next Article
Collocation methods for differential equations with piecewise linear delays
Existence and uniqueness of positive solution to a nonlocal differential equation with homogeneous Dirichlet boundary conditionA nonmonotone case
1.  School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006 
2.  College of Mathematics Science, Chongqing Normal University, Chongqing 400047 
3.  Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 
References:
[1] 
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach space,, SIAM Review, 18 (1976), 620. doi: 10.1137/1018114. 
[2] 
L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19,, American Mathematical Society, (1998). 
[3] 
P. Freitas and G. Sweers, Positivity results for a nonlocal elliptic equation,, Proceedings of the Royal Society of Edinburgh, 128A (1998), 697. doi: 10.1017/S0308210500021727. 
[4] 
W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17. doi: 10.1038/287017a0. 
[5] 
P. Hess, On uniqueness of positive solutions to nonlinear elliptic boundary value problems,, Math. Z., 154 (1977), 17. doi: 10.1007/BF01215108. 
[6] 
D. Liang, J. W.H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay on bounded fields and their numeric computations,, Diff. Eqns. Dynam. Syst., 11 (2003), 117. 
[7] 
M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287. doi: 10.1126/science.267326. 
[8] 
C. V. Pao, "Nonlinear Parablic and Elliptic Equations,", Plenum, (1992). doi: 10.1007/9781461530343. 
[9] 
M. H. Protter and H. F. Weinberger, "Maximum Principle in Differential Equations,", SpringerVerlag, (1984). doi: 10.1007/9781461252825. 
[10] 
J. W.H. So, J. Wu and X. Zou, A reaction diffusion model for a single species with age structureI. Traveling wave fronts on unbounded domains,, Proc. Royal Soc. London. A, 457 (2001), 1841. 
[11] 
D. Xu and X.Q. Zhao, A nonlocal reaction diffusion population model with stage structure,, Canadian Applied Mathematics Quarterly, 11 (2003), 303. 
[12] 
X.Q. Zhao, Global attractivity in a class of nonmonotone reaction diffusion equations with delay,, Canad. Appl. Math. Quart., 17 (2009), 271. 
show all references
References:
[1] 
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach space,, SIAM Review, 18 (1976), 620. doi: 10.1137/1018114. 
[2] 
L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19,, American Mathematical Society, (1998). 
[3] 
P. Freitas and G. Sweers, Positivity results for a nonlocal elliptic equation,, Proceedings of the Royal Society of Edinburgh, 128A (1998), 697. doi: 10.1017/S0308210500021727. 
[4] 
W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17. doi: 10.1038/287017a0. 
[5] 
P. Hess, On uniqueness of positive solutions to nonlinear elliptic boundary value problems,, Math. Z., 154 (1977), 17. doi: 10.1007/BF01215108. 
[6] 
D. Liang, J. W.H. So, F. Zhang and X. Zou, Population dynamic models with nonlocal delay on bounded fields and their numeric computations,, Diff. Eqns. Dynam. Syst., 11 (2003), 117. 
[7] 
M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Science, 197 (1977), 287. doi: 10.1126/science.267326. 
[8] 
C. V. Pao, "Nonlinear Parablic and Elliptic Equations,", Plenum, (1992). doi: 10.1007/9781461530343. 
[9] 
M. H. Protter and H. F. Weinberger, "Maximum Principle in Differential Equations,", SpringerVerlag, (1984). doi: 10.1007/9781461252825. 
[10] 
J. W.H. So, J. Wu and X. Zou, A reaction diffusion model for a single species with age structureI. Traveling wave fronts on unbounded domains,, Proc. Royal Soc. London. A, 457 (2001), 1841. 
[11] 
D. Xu and X.Q. Zhao, A nonlocal reaction diffusion population model with stage structure,, Canadian Applied Mathematics Quarterly, 11 (2003), 303. 
[12] 
X.Q. Zhao, Global attractivity in a class of nonmonotone reaction diffusion equations with delay,, Canad. Appl. Math. Quart., 17 (2009), 271. 
[1] 
Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear secondorder integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596604. doi: 10.3934/proc.2015.0596 
[2] 
John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$laplacian. Conference Publications, 2011, 2011 (Special) : 515522. doi: 10.3934/proc.2011.2011.515 
[3] 
Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 10611069. doi: 10.3934/proc.2007.2007.1061 
[4] 
Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155159. doi: 10.3934/proc.2007.2007.155 
[5] 
Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multipoint boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759769. doi: 10.3934/proc.2013.2013.759 
[6] 
Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273280. doi: 10.3934/proc.2003.2003.273 
[7] 
Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for nonlocal fractional problems via Morse theory. Discrete & Continuous Dynamical Systems  B, 2014, 19 (8) : 24832499. doi: 10.3934/dcdsb.2014.19.2483 
[8] 
Antonio Greco, Vincenzino Mascia. Nonlocal sublinear problems: Existence, comparison, and radial symmetry. Discrete & Continuous Dynamical Systems  A, 2019, 39 (1) : 503519. doi: 10.3934/dcds.2019021 
[9] 
Xuewei Cui, Mei Yu. Nonexistence of positive solutions for a higher order fractional equation. Discrete & Continuous Dynamical Systems  A, 2019, 39 (3) : 13791387. doi: 10.3934/dcds.2019059 
[10] 
Rafael Abreu, Cristian MoralesRodrigo, Antonio Suárez. Some eigenvalue problems with nonlocal boundary conditions and applications. Communications on Pure & Applied Analysis, 2014, 13 (6) : 24652474. doi: 10.3934/cpaa.2014.13.2465 
[11] 
Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems  B, 2014, 19 (8) : 25692580. doi: 10.3934/dcdsb.2014.19.2569 
[12] 
Tao Wang. Global dynamics of a nonlocal delayed differential equation in the half plane. Communications on Pure & Applied Analysis, 2014, 13 (6) : 24752492. doi: 10.3934/cpaa.2014.13.2475 
[13] 
Wenying Feng, Guang Zhang, Yikang Chai. Existence of positive solutions for second order differential equations arising from chemical reactor theory. Conference Publications, 2007, 2007 (Special) : 373381. doi: 10.3934/proc.2007.2007.373 
[14] 
G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377384. doi: 10.3934/proc.2009.2009.377 
[15] 
John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283290. doi: 10.3934/proc.2013.2013.283 
[16] 
John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 8390. doi: 10.3934/proc.2003.2003.83 
[17] 
Juan C. Pozo, Vicente Vergara. Fundamental solutions and decay of fully nonlocal problems. Discrete & Continuous Dynamical Systems  A, 2019, 39 (1) : 639666. doi: 10.3934/dcds.2019026 
[18] 
Jinggang Tan. Positive solutions for non local elliptic problems. Discrete & Continuous Dynamical Systems  A, 2013, 33 (2) : 837859. doi: 10.3934/dcds.2013.33.837 
[19] 
Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729756. doi: 10.3934/cpaa.2004.3.729 
[20] 
Hongjing Pan, Ruixiang Xing. On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models. Discrete & Continuous Dynamical Systems  A, 2015, 35 (8) : 36273682. doi: 10.3934/dcds.2015.35.3627 
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]