2011, 10(2): 459-478. doi: 10.3934/cpaa.2011.10.459

Free boundary problem for compressible flows with density--dependent viscosity coefficients

1. 

Department of Mathematics, Zhejiang University, Hangzhou 310027, China

Received  May 2010 Revised  September 2010 Published  December 2010

In this paper, we consider the free boundary problem of the spherically symmetric compressible isentropic Navier--Stokes equations in $R^n (n \geq 1)$, with density--dependent viscosity coefficients. Precisely, the viscosity coefficients $\mu$ and $\lambda$ are assumed to be proportional to $\rho^\theta$, $0 < \theta < 1$, where $\rho$ is the density. We obtain the global existence, uniqueness and continuous dependence on initial data of a weak solution, with a Lebesgue initial velocity $u_0\in L^{4 m}$, $4m>n$ and $\theta<\frac{4m-2}{4m+n}$. We weaken the regularity requirement of the initial velocity, and improve some known results of the one-dimensional system.
Citation: Ping Chen, Daoyuan Fang, Ting Zhang. Free boundary problem for compressible flows with density--dependent viscosity coefficients. Communications on Pure & Applied Analysis, 2011, 10 (2) : 459-478. doi: 10.3934/cpaa.2011.10.459
References:
[1]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems,, Comm. Partial Differential Equations, 28 (2003), 843. doi: doi:10.1081/PDE-120020499.

[2]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model,, Comm. Math. Phys., 238 (2003), 211.

[3]

G. Q. Chen and M. Kratka, Global solutions to the Navier-Stokes equations for compressible heat-conducting flow with symmetry and free boundary,, Comm. Partial Differential Equations, 27 (2002), 907. doi: doi:10.1081/PDE-120020499.

[4]

G. Q. Chen, Vacuum states and global stability of rarefaction waves for compressible flow,, Methods Appl. Anal., 7 (2000), 337.

[5]

P. Chen and T. Zhang, A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients,, Commun. Pure Appl. Anal., 7 (2008), 987. doi: doi:10.3934/cpaa.2008.7.987.

[6]

D. Y. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension,, Commun. Pure Appl. Anal., 3 (2004), 675. doi: doi:10.3934/cpaa.2004.3.675.

[7]

D. Y. Fang and T. Zhang, A note on compressible Navier-Stokes equations with vacuum state in one dimension,, Nonlinear Anal., 58 (2004), 719. doi: doi:10.1016/j.na.2004.05.016.

[8]

D. Y. Fang and T. Zhang, Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data,, J. Differential Equations, 222 (2006), 63. doi: doi:10.1016/j.jde.2005.07.011.

[9]

Z. H. Guo, Q. S. Jiu and Z. P. Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, SIAM J. Math. Anal., 39 (2008), 1402. doi: doi:10.1137/070680333.

[10]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887. doi: doi:10.1137/0151043.

[11]

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow,, Arch. Rational Mech. Anal., 114 (1991), 15. doi: doi:10.1007/BF00375683.

[12]

D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data,, J. Differential Equations, 95 (1992), 33. doi: doi:10.1016/0022-0396(92)90042-L.

[13]

D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data,, Indiana Univ. Math. J., 41 (1992), 1225. doi: doi:10.1512/iumj.1992.41.41060.

[14]

S. Jiang, Z. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity,, Methods Appl. Anal., 12 (2005), 239.

[15]

S. Jiang and A. A. Zlotnik, Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 939. doi: doi:10.1017/S0308210500003565.

[16]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. 1-2., Oxford University Press: New York, (1996).

[17]

T. P. Liu, Z. P. Xin and T. Yang, Vacuum states for compressible flow,, Discrete Contin. Dynam. Systems, 4 (1998), 1.

[18]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equation,, Comm. Partial Differential Equations, 32 (2007), 431. doi: doi:10.1080/03605300600857079.

[19]

X. L. Qin, Z. A. Yao and H. X. Zhao, One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries,, Comm. Pure Appl. Anal., 7 (2008), 373.

[20]

S. W. Vong, T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum(II),, J. Differential Equations, 192 (2003), 475. doi: doi:10.1016/S0022-0396(03)00060-3.

[21]

V. A. Vaigant and A. V. Kazhikhov, On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscosity fluid,, Siberian Math. J., 2 (1995), 1108. doi: doi:10.1007/BF02106835.

[22]

Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229. doi: doi:10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[23]

T. Yang, Z. A. Yao and C. J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Comm. Partial Differential Equations, 26 (2001), 965. doi: doi:10.1081/PDE-100002385.

[24]

T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum,, Comm. Math. Phys., 230 (2002), 329. doi: doi:10.1007/s00220-002-0703-6.

[25]

T. Zhang and D. Y. Fang, Global behavior of spherically symmetric Navier-Stokes equations with density-dependent viscosity,, J. Differential Equations, 236 (2007), 293. doi: doi:10.1016/j.jde.2007.01.025.

[26]

T. Zhang and D. Y. Fang, Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients,, Arch. Ration. Mech. Anal., 191 (2009), 195. doi: doi:10.1007/s00205-008-0183-8.

[27]

T. Zhang and D. Y. Fang, A note on spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, Nonlinear Analysis: Real World Applications, 10 (2009), 2272. doi: doi:10.1016/j.nonrwa.2008.04.014.

show all references

References:
[1]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems,, Comm. Partial Differential Equations, 28 (2003), 843. doi: doi:10.1081/PDE-120020499.

[2]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model,, Comm. Math. Phys., 238 (2003), 211.

[3]

G. Q. Chen and M. Kratka, Global solutions to the Navier-Stokes equations for compressible heat-conducting flow with symmetry and free boundary,, Comm. Partial Differential Equations, 27 (2002), 907. doi: doi:10.1081/PDE-120020499.

[4]

G. Q. Chen, Vacuum states and global stability of rarefaction waves for compressible flow,, Methods Appl. Anal., 7 (2000), 337.

[5]

P. Chen and T. Zhang, A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients,, Commun. Pure Appl. Anal., 7 (2008), 987. doi: doi:10.3934/cpaa.2008.7.987.

[6]

D. Y. Fang and T. Zhang, Compressible Navier-Stokes equations with vacuum state in one dimension,, Commun. Pure Appl. Anal., 3 (2004), 675. doi: doi:10.3934/cpaa.2004.3.675.

[7]

D. Y. Fang and T. Zhang, A note on compressible Navier-Stokes equations with vacuum state in one dimension,, Nonlinear Anal., 58 (2004), 719. doi: doi:10.1016/j.na.2004.05.016.

[8]

D. Y. Fang and T. Zhang, Global solutions of the Navier-Stokes equations for compressible flow with density-dependent viscosity and discontinuous initial data,, J. Differential Equations, 222 (2006), 63. doi: doi:10.1016/j.jde.2005.07.011.

[9]

Z. H. Guo, Q. S. Jiu and Z. P. Xin, Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, SIAM J. Math. Anal., 39 (2008), 1402. doi: doi:10.1137/070680333.

[10]

D. Hoff and D. Serre, The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow,, SIAM J. Appl. Math., 51 (1991), 887. doi: doi:10.1137/0151043.

[11]

D. Hoff, Discontinuous solutions of the Navier-Stokes equations for compressible flow,, Arch. Rational Mech. Anal., 114 (1991), 15. doi: doi:10.1007/BF00375683.

[12]

D. Hoff, Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data,, J. Differential Equations, 95 (1992), 33. doi: doi:10.1016/0022-0396(92)90042-L.

[13]

D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data,, Indiana Univ. Math. J., 41 (1992), 1225. doi: doi:10.1512/iumj.1992.41.41060.

[14]

S. Jiang, Z. P. Xin and P. Zhang, Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity,, Methods Appl. Anal., 12 (2005), 239.

[15]

S. Jiang and A. A. Zlotnik, Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data,, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 939. doi: doi:10.1017/S0308210500003565.

[16]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. 1-2., Oxford University Press: New York, (1996).

[17]

T. P. Liu, Z. P. Xin and T. Yang, Vacuum states for compressible flow,, Discrete Contin. Dynam. Systems, 4 (1998), 1.

[18]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equation,, Comm. Partial Differential Equations, 32 (2007), 431. doi: doi:10.1080/03605300600857079.

[19]

X. L. Qin, Z. A. Yao and H. X. Zhao, One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries,, Comm. Pure Appl. Anal., 7 (2008), 373.

[20]

S. W. Vong, T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum(II),, J. Differential Equations, 192 (2003), 475. doi: doi:10.1016/S0022-0396(03)00060-3.

[21]

V. A. Vaigant and A. V. Kazhikhov, On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscosity fluid,, Siberian Math. J., 2 (1995), 1108. doi: doi:10.1007/BF02106835.

[22]

Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229. doi: doi:10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.

[23]

T. Yang, Z. A. Yao and C. J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum,, Comm. Partial Differential Equations, 26 (2001), 965. doi: doi:10.1081/PDE-100002385.

[24]

T. Yang and C. J. Zhu, Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum,, Comm. Math. Phys., 230 (2002), 329. doi: doi:10.1007/s00220-002-0703-6.

[25]

T. Zhang and D. Y. Fang, Global behavior of spherically symmetric Navier-Stokes equations with density-dependent viscosity,, J. Differential Equations, 236 (2007), 293. doi: doi:10.1016/j.jde.2007.01.025.

[26]

T. Zhang and D. Y. Fang, Global behavior of spherically symmetric Navier-Stokes-Poisson system with degenerate viscosity coefficients,, Arch. Ration. Mech. Anal., 191 (2009), 195. doi: doi:10.1007/s00205-008-0183-8.

[27]

T. Zhang and D. Y. Fang, A note on spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients,, Nonlinear Analysis: Real World Applications, 10 (2009), 2272. doi: doi:10.1016/j.nonrwa.2008.04.014.

[1]

Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373

[2]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[3]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[4]

Quansen Jiu, Zhouping Xin. The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinetic & Related Models, 2008, 1 (2) : 313-330. doi: 10.3934/krm.2008.1.313

[5]

Wuming Li, Xiaojun Liu, Quansen Jiu. The decay estimates of solutions for 1D compressible flows with density-dependent viscosity coefficients. Communications on Pure & Applied Analysis, 2013, 12 (2) : 647-661. doi: 10.3934/cpaa.2013.12.647

[6]

Ping Chen, Ting Zhang. A vacuum problem for multidimensional compressible Navier-Stokes equations with degenerate viscosity coefficients. Communications on Pure & Applied Analysis, 2008, 7 (4) : 987-1016. doi: 10.3934/cpaa.2008.7.987

[7]

Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20

[8]

Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure & Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459

[9]

Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

[10]

Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001

[11]

Yuming Qin, Lan Huang, Shuxian Deng, Zhiyong Ma, Xiaoke Su, Xinguang Yang. Interior regularity of the compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 163-192. doi: 10.3934/dcdss.2009.2.163

[12]

Tao Wang, Huijiang Zhao, Qingyang Zou. One-dimensional compressible Navier-Stokes equations with large density oscillation. Kinetic & Related Models, 2013, 6 (3) : 649-670. doi: 10.3934/krm.2013.6.649

[13]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[14]

Jishan Fan, Tohru Ozawa. An approximation model for the density-dependent magnetohydrodynamic equations. Conference Publications, 2013, 2013 (special) : 207-216. doi: 10.3934/proc.2013.2013.207

[15]

Enrique Fernández-Cara. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1021-1090. doi: 10.3934/dcdss.2012.5.1021

[16]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[17]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[18]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[19]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[20]

Dong Li, Xinwei Yu. On some Liouville type theorems for the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4719-4733. doi: 10.3934/dcds.2014.34.4719

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]