2011, 10(5): 1401-1414. doi: 10.3934/cpaa.2011.10.1401

Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential

1. 

Département de Mathématiques, Université de Perpignan, Avenue de Villeneuve 52, 66860 Perpignan Cedex

2. 

Ben Gurion University of the Negev, Department of Mathematics, Be'er Sheva 84105, Israel

3. 

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780

Received  March 2009 Revised  August 2010 Published  April 2011

A nonautonomous second order system with a nonsmooth potential is studied. It is assumed that the system is asymptotically linear at infinity and resonant (both at infinity and at the origin), with respect to the zero eigenvalue. Also, it is assumed that the linearization of the system is indefinite. Using a nonsmooth variant of the reduction method and the local linking theorem, we show that the system has at least two nontrivial solutions.
Citation: D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1401-1414. doi: 10.3934/cpaa.2011.10.1401
References:
[1]

H. Amann, Saddle points and multiple solutions of differential equations,, Math. Z., 169 (1979), 127. doi: 10.1007/BF01215273.

[2]

G. Barletta and R. Livrea, Existence of three periodic solutions for a nonautonomous second order system,, Le Mathematiche, 57 (2002), 205.

[3]

G. Barletta and N. S. Papageorgiou, Nonautonomous second order periodic systems: existence and multiplicity of solutions,, J. Nonlinear Convex Anal., 8 (2007), 373.

[4]

G. Bonanno and R. Livrea, Periodic solutions for a class of second order Hamiltonian systems,, Electronic J. Differential Equations, 115 (2005).

[5]

A. Castro and A. C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem,, Annali Mat. Pura Appl., 120 (1979), 113. doi: 10.1007/BF02411940.

[6]

F. Clarke, "Optimization and Nonsmooth Analysis,", Wiley, (1983).

[7]

G. Cordaro, Three periodic solutions to an eigenvalue problem for a class of second-order Hamiltonian systems,, Abstr. Appl. Anal., 115 (2003), 1037. doi: 10.1155/S1085337503305044.

[8]

F. Faraci, Three periodic solutions for a second order nonautonomous system,, J. Nonlinear Convex Anal., 3 (2002), 393.

[9]

L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,", Chapman & Hall/CRC, (2005).

[10]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis,", Chapman & Hall/CRC, (2006).

[11]

S. Hu and N. S. Papageorgiou, Nontrivial solutions for superquadratic nonautonomous periodic systems,, Topol. Methods Nonlinear Anal., 34 (2009), 327.

[12]

J. Mawhin, Forced second order conservative systems with periodic nonlinearity,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 6 (1989), 415.

[13]

J. Mawhin and M. Willem, "Critical Point Theory And Hamiltonian Systems,", Springer-Verlag, (1989).

[14]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Periodic solutions for nonautonomous systems with nonsmooth quadratic or superquadratic potential,, Topol. Methods Nonlinear Anal., 24 (2004), 269.

[15]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Two nontrivial solutions for periodic systems with indefinite linear part,, Discrete Contin. Dyn. Syst., 19 (2007), 197. doi: 10.3934/dcds.2007.19.197.

[16]

D. Motreanu and V. Radulescu, "Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems,", Kluwer Academic Publishers, (2003).

[17]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure Appl. Math., 31 (1978), 157. doi: 10.1002/cpa.3160310203.

[18]

R. E. Showalter, "Hilbert Space Methods for Partial Differential Equations,", Pitman, (1977).

[19]

C.-L. Tang and X.-P. Wu, Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems,, J. Math. Anal. Appl., 275 (2002), 870. doi: 10.1016/S0022-247X(02)00442-0.

[20]

K. Thews, Nontrivial solutions of elliptic equations at resonance,, Proc. Roy. Soc. Edinburgh Sect. A, 85 (1980), 119.

show all references

References:
[1]

H. Amann, Saddle points and multiple solutions of differential equations,, Math. Z., 169 (1979), 127. doi: 10.1007/BF01215273.

[2]

G. Barletta and R. Livrea, Existence of three periodic solutions for a nonautonomous second order system,, Le Mathematiche, 57 (2002), 205.

[3]

G. Barletta and N. S. Papageorgiou, Nonautonomous second order periodic systems: existence and multiplicity of solutions,, J. Nonlinear Convex Anal., 8 (2007), 373.

[4]

G. Bonanno and R. Livrea, Periodic solutions for a class of second order Hamiltonian systems,, Electronic J. Differential Equations, 115 (2005).

[5]

A. Castro and A. C. Lazer, Critical point theory and the number of solutions of a nonlinear Dirichlet problem,, Annali Mat. Pura Appl., 120 (1979), 113. doi: 10.1007/BF02411940.

[6]

F. Clarke, "Optimization and Nonsmooth Analysis,", Wiley, (1983).

[7]

G. Cordaro, Three periodic solutions to an eigenvalue problem for a class of second-order Hamiltonian systems,, Abstr. Appl. Anal., 115 (2003), 1037. doi: 10.1155/S1085337503305044.

[8]

F. Faraci, Three periodic solutions for a second order nonautonomous system,, J. Nonlinear Convex Anal., 3 (2002), 393.

[9]

L. Gasinski and N. S. Papageorgiou, "Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems,", Chapman & Hall/CRC, (2005).

[10]

L. Gasinski and N. S. Papageorgiou, "Nonlinear Analysis,", Chapman & Hall/CRC, (2006).

[11]

S. Hu and N. S. Papageorgiou, Nontrivial solutions for superquadratic nonautonomous periodic systems,, Topol. Methods Nonlinear Anal., 34 (2009), 327.

[12]

J. Mawhin, Forced second order conservative systems with periodic nonlinearity,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 6 (1989), 415.

[13]

J. Mawhin and M. Willem, "Critical Point Theory And Hamiltonian Systems,", Springer-Verlag, (1989).

[14]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Periodic solutions for nonautonomous systems with nonsmooth quadratic or superquadratic potential,, Topol. Methods Nonlinear Anal., 24 (2004), 269.

[15]

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Two nontrivial solutions for periodic systems with indefinite linear part,, Discrete Contin. Dyn. Syst., 19 (2007), 197. doi: 10.3934/dcds.2007.19.197.

[16]

D. Motreanu and V. Radulescu, "Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems,", Kluwer Academic Publishers, (2003).

[17]

P. H. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure Appl. Math., 31 (1978), 157. doi: 10.1002/cpa.3160310203.

[18]

R. E. Showalter, "Hilbert Space Methods for Partial Differential Equations,", Pitman, (1977).

[19]

C.-L. Tang and X.-P. Wu, Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems,, J. Math. Anal. Appl., 275 (2002), 870. doi: 10.1016/S0022-247X(02)00442-0.

[20]

K. Thews, Nontrivial solutions of elliptic equations at resonance,, Proc. Roy. Soc. Edinburgh Sect. A, 85 (1980), 119.

[1]

Nikolaos S. Papageorgiou, Vicenšiu D. Rădulescu, Dušan D. Repovš. Robin problems with indefinite linear part and competition phenomena. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1293-1314. doi: 10.3934/cpaa.2017063

[2]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Two nontrivial solutions for periodic systems with indefinite linear part. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 197-210. doi: 10.3934/dcds.2007.19.197

[3]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929

[4]

Diego Averna, Nikolaos S. Papageorgiou, Elisabetta Tornatore. Multiple solutions for nonlinear nonhomogeneous resonant coercive problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 155-178. doi: 10.3934/dcdss.2018010

[5]

Nobu Kishimoto. Resonant decomposition and the $I$-method for the two-dimensional Zakharov system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4095-4122. doi: 10.3934/dcds.2013.33.4095

[6]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial & Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[7]

M. Grossi, P. Magrone, M. Matzeu. Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 703-718. doi: 10.3934/dcds.2001.7.703

[8]

Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure & Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571

[9]

Thierry Champion, Luigi De Pascale. On the twist condition and $c$-monotone transport plans. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1339-1353. doi: 10.3934/dcds.2014.34.1339

[10]

Zhirong He, Weinian Zhang. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 841-854. doi: 10.3934/dcds.2009.24.841

[11]

Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829

[12]

D. Ruiz, J. R. Ward. Some notes on periodic systems with linear part at resonance. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 337-350. doi: 10.3934/dcds.2004.11.337

[13]

Yunhua Zhou. The local $C^1$-density of stable ergodicity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2621-2629. doi: 10.3934/dcds.2013.33.2621

[14]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-15. doi: 10.3934/jimo.2018049

[15]

A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987

[16]

Chun-Gil Park. Stability of a linear functional equation in Banach modules. Conference Publications, 2003, 2003 (Special) : 694-700. doi: 10.3934/proc.2003.2003.694

[17]

Maxime Breden, Laurent Desvillettes, Jean-Philippe Lessard. Rigorous numerics for nonlinear operators with tridiagonal dominant linear part. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4765-4789. doi: 10.3934/dcds.2015.35.4765

[18]

Shu-Guang Shao, Shu Wang, Wen-Qing Xu, Yu-Li Ge. On the local C1, α solution of ideal magneto-hydrodynamical equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2103-2113. doi: 10.3934/dcds.2017090

[19]

Teresa Faria. Normal forms for semilinear functional differential equations in Banach spaces and applications. Part II. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 155-176. doi: 10.3934/dcds.2001.7.155

[20]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

[Back to Top]