• Previous Article
    On a general class of free boundary problems for European-style installment options with continuous payment plan
  • CPAA Home
  • This Issue
  • Next Article
    On the support of solutions to the Kadomtsev-Petviashvili (KP-II) equation
2011, 10(4): 1225-1237. doi: 10.3934/cpaa.2011.10.1225

Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation

1. 

Mathematical Institute, Tohoku University, Sendai 980-8578

Received  July 2010 Revised  October 2010 Published  April 2011

We consider the Cauchy problem for a parabolic partial differential equation with a power nonlinearity. It was shown in our previous paper that in some parameter range, the problem has a solution with a moving singularity that becomes anomalous in finite time. Our concern is a blow-up solution with a moving singularity. In this paper, we show that there exists a solution with a moving singularity such that it blows up at space infinity.
Citation: Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225
References:
[1]

C.-C. Chen and C.-S. Lin, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations,, J. Geometric Analysis, 9 (1999), 221.

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 16 (1966), 105.

[3]

Y. Giga and N. Umeda, Blow-up directions at space infinity for solutions of semilinear heat equations,, Bol. Soc. Parana. Mat., 23 (2005), 9. doi: 10.5269/bspm.v23i1-2.7450.

[4]

Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations,, J. Math. Anal. Appl., 316 (2006), 538. doi: 10.1016/j.jmaa.2005.05.007.

[5]

A. A. Lacey, The form of blow-up for nonlinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 98 (1984), 183.

[6]

O. A. Ladyž zenskaja, V. A. Solonnikov and N. M. Ural'ceva, "Linear and Quasi-linear Equations of Parabolic Type,", Amer. Math. Soc., 23 (1968).

[7]

N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion,, J. Math. Anal. Appl., 261 (2001), 350. doi: 10.1006/jmaa.2001.7530.

[8]

P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts,, Birkh\, (2007).

[9]

S. Sato and E. Yanagida, Solutions with Moving Singularities for a Semilinear Parabolic Equation,, J. Differential Equations, 246 (2009), 724. doi: 10.1016/j.jde.2008.09.004.

[10]

S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation,, Discrete and Continuous Dynamical Systems-Series A, 26 (2010), 313. doi: 10.3934/dcds.2010.26.313.

[11]

S. Sato and E. Yanagida, Appearance of anomalous singularities in a semilinear parabolic equation,, preprint., ().

[12]

Y. Seki, On directional blow-up for quasilinear parabolic equations with fast diffusion,, J. Math. Anal. Appl., 338 (2008), 572. doi: 10.1016/j.jmaa.2007.05.033.

[13]

Y. Seki, R. Suzuki and N. Umeda, Blow-up directions for quasilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 379. doi: 10.1017/S0308210506000801.

[14]

M. Shimojō, The global profile of blow-up at space infinity in semilinear heat equations,, J. Math. Kyoto Univ., 48 (2008), 339.

[15]

L. Véron, "Singularities of Solutions of Second Order Quasilinear Equations,", Pitman Research Notes in Mathematics Series, 353 (1996).

show all references

References:
[1]

C.-C. Chen and C.-S. Lin, Existence of positive weak solutions with a prescribed singular set of semilinear elliptic equations,, J. Geometric Analysis, 9 (1999), 221.

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 16 (1966), 105.

[3]

Y. Giga and N. Umeda, Blow-up directions at space infinity for solutions of semilinear heat equations,, Bol. Soc. Parana. Mat., 23 (2005), 9. doi: 10.5269/bspm.v23i1-2.7450.

[4]

Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations,, J. Math. Anal. Appl., 316 (2006), 538. doi: 10.1016/j.jmaa.2005.05.007.

[5]

A. A. Lacey, The form of blow-up for nonlinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 98 (1984), 183.

[6]

O. A. Ladyž zenskaja, V. A. Solonnikov and N. M. Ural'ceva, "Linear and Quasi-linear Equations of Parabolic Type,", Amer. Math. Soc., 23 (1968).

[7]

N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with small diffusion,, J. Math. Anal. Appl., 261 (2001), 350. doi: 10.1006/jmaa.2001.7530.

[8]

P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States," Birkhäuser Advanced Texts,, Birkh\, (2007).

[9]

S. Sato and E. Yanagida, Solutions with Moving Singularities for a Semilinear Parabolic Equation,, J. Differential Equations, 246 (2009), 724. doi: 10.1016/j.jde.2008.09.004.

[10]

S. Sato and E. Yanagida, Forward self-similar solution with a moving singularity for a semilinear parabolic equation,, Discrete and Continuous Dynamical Systems-Series A, 26 (2010), 313. doi: 10.3934/dcds.2010.26.313.

[11]

S. Sato and E. Yanagida, Appearance of anomalous singularities in a semilinear parabolic equation,, preprint., ().

[12]

Y. Seki, On directional blow-up for quasilinear parabolic equations with fast diffusion,, J. Math. Anal. Appl., 338 (2008), 572. doi: 10.1016/j.jmaa.2007.05.033.

[13]

Y. Seki, R. Suzuki and N. Umeda, Blow-up directions for quasilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 379. doi: 10.1017/S0308210506000801.

[14]

M. Shimojō, The global profile of blow-up at space infinity in semilinear heat equations,, J. Math. Kyoto Univ., 48 (2008), 339.

[15]

L. Véron, "Singularities of Solutions of Second Order Quasilinear Equations,", Pitman Research Notes in Mathematics Series, 353 (1996).

[1]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[2]

Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691

[3]

Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313

[4]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[5]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[6]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[7]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[8]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[9]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[10]

Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025

[11]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[12]

Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905

[13]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[14]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[15]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[16]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[17]

Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585

[18]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[19]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[20]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]