July  2011, 10(4): 1129-1147. doi: 10.3934/cpaa.2011.10.1129

A continuum of extinction rates for the fast diffusion equation

1. 

Department of Applied Mathematics and Statistics, Comenius University, 842 48 Bratislava

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid

3. 

Fakultät für Mathematik, Universität Duisburg-Essen, 45117 Essen, Germany

Received  September 2010 Revised  November 2011 Published  April 2011

We find a continuum of extinction rates for solutions $u(y,\tau)\ge 0$ of the fast diffusion equation $u_\tau=\Delta u^m$ in a subrange of exponents $m\in (0,1)$. The equation is posed in $R^n$ for times up to the extinction time $T>0$. The rates take the form $\|u(\cdot,\tau)\|_\infty$ ~ $(T-\tau)^\theta$ for a whole interval of $\theta>0$. These extinction rates depend explicitly on the spatial decay rates of initial data.
Citation: Marek Fila, Juan-Luis Vázquez, Michael Winkler. A continuum of extinction rates for the fast diffusion equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1129-1147. doi: 10.3934/cpaa.2011.10.1129
References:
[1]

J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion,, Arch. Rat. Mech. Anal., 74 (1980), 379. doi: 10.1007/BF00249681. Google Scholar

[2]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates,, Arch. Rat. Mech. Anal., 191 (2009), 347. doi: 10.1007/s00205-008-0155-z. Google Scholar

[3]

M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities,, Proc. Nat. Acad. Sciences, 107 (2010), 16459. doi: 10.1073/pnas.1003972107. Google Scholar

[4]

M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold,, Arch. Rat. Mech. Anal., 196 (2010), 631. doi: 10.1007/s00205-009-0252-7. Google Scholar

[5]

J. Denzler and R. J. McCann, Fast diffusion to self-Similarity: Complete spectrum, long-time asymptotics, and numerology,, Arch. Rat. Mech. Anal., 175 (2005), 301. doi: 10.1007/s00205-004-0336-3. Google Scholar

[6]

M. Fila, J. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation,, J. Diff. Equations, 228 (2006), 339. doi: 10.1016/j.jde.2006.01.019. Google Scholar

[7]

M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation,, J. Evol. Equations, 8 (2008), 673. doi: 10.1007/s00028-008-0400-9. Google Scholar

[8]

M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation,, J. Diff. Equations, 205 (2004), 365. doi: 10.1016/j.jde.2004.03.009. Google Scholar

[9]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Diffusion Equations,'', Oxford Lecture Notes in Maths. and its Applications, (2006). Google Scholar

[10]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'', Oxford Mathematical Monographs, (2007). Google Scholar

show all references

References:
[1]

J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion,, Arch. Rat. Mech. Anal., 74 (1980), 379. doi: 10.1007/BF00249681. Google Scholar

[2]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates,, Arch. Rat. Mech. Anal., 191 (2009), 347. doi: 10.1007/s00205-008-0155-z. Google Scholar

[3]

M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities,, Proc. Nat. Acad. Sciences, 107 (2010), 16459. doi: 10.1073/pnas.1003972107. Google Scholar

[4]

M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold,, Arch. Rat. Mech. Anal., 196 (2010), 631. doi: 10.1007/s00205-009-0252-7. Google Scholar

[5]

J. Denzler and R. J. McCann, Fast diffusion to self-Similarity: Complete spectrum, long-time asymptotics, and numerology,, Arch. Rat. Mech. Anal., 175 (2005), 301. doi: 10.1007/s00205-004-0336-3. Google Scholar

[6]

M. Fila, J. King, M. Winkler and E. Yanagida, Optimal lower bound of the grow-up rate for a supercritical parabolic equation,, J. Diff. Equations, 228 (2006), 339. doi: 10.1016/j.jde.2006.01.019. Google Scholar

[7]

M. Fila and M. Winkler, Rate of convergence to a singular steady state of a supercritical parabolic equation,, J. Evol. Equations, 8 (2008), 673. doi: 10.1007/s00028-008-0400-9. Google Scholar

[8]

M. Fila, M. Winkler and E. Yanagida, Grow-up rate of solutions for a supercritical semilinear diffusion equation,, J. Diff. Equations, 205 (2004), 365. doi: 10.1016/j.jde.2004.03.009. Google Scholar

[9]

J. L. Vázquez, "Smoothing and Decay Estimates for Nonlinear Diffusion Equations,'', Oxford Lecture Notes in Maths. and its Applications, (2006). Google Scholar

[10]

J. L. Vázquez, "The Porous Medium Equation. Mathematical Theory,'', Oxford Mathematical Monographs, (2007). Google Scholar

[1]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[2]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[3]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[4]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[5]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic & Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[6]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[7]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[8]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[9]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[10]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[11]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[12]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[13]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[14]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[15]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[16]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[17]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[18]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[19]

Yun-Gang Chen, Yoshikazu Giga, Koh Sato. On instant extinction for very fast diffusion equations. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 243-250. doi: 10.3934/dcds.1997.3.243

[20]

Kim-Ngan Le, William McLean, Martin Stynes. Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2765-2787. doi: 10.3934/cpaa.2019124

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]