July  2011, 10(4): 1111-1119. doi: 10.3934/cpaa.2011.10.1111

Regularity of solutions to an integral equation associated with Bessel potential

1. 

Department of Mathematics, Wayne State University, Detroit, MI 48202, United States

Received  July 2010 Revised  December 2010 Published  April 2011

In this paper, we study the regularity of the positive solutions to an integral equation associated with the Bessel potential. The kernel estimates for the Bessel potential plays an essential role in deriving such regularity results. First, we apply the regularity lifting by contracting operators to get the $L^\infty$ estimate. Then, we use the regularity lifting by combinations of contracting and shrinking operators, which was recently developed in [4] and [5], to prove the Lipschitz continuity estimate. Our regularity results here have been recently extended to positive solutions to an integral system associated with Bessel potential [9].
Citation: Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111
References:
[1]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations,, Discrete Contin. Dyn. Syst., (2005), 164. Google Scholar

[2]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Commun. Pure Appl. Anal., 4 (2005), 1. doi: 10.3934/cpaa.2005.4.1. Google Scholar

[3]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar

[4]

W. Chen and C. Li, "Methods on Nonliear Elliptic Equations,'', AIMS Series on Differential Equations and Dynamical Systems, (2010). Google Scholar

[5]

W. Chen, C. Li and C. Ma, Regularity of solutions for an integral system of Wolff type,, preprint., (). Google Scholar

[6]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Discrete Contin. Dyn. Syst., 12 (2005), 347. doi: 0.3934/dcds.2005.12.347. Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Commun. Pure Appl. Math, 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[8]

L. Grafakos, "Classical and Modern Fourier Analysis,'', Pearson Education, (2004). Google Scholar

[9]

X. Han and G. Lu, Regularity of solutions to an integral system of Bessel potential,, preprint., (). Google Scholar

[10]

Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc. (JEMS), 6 (2004), 153. doi: 10.4171/JEMS/6. Google Scholar

[11]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Commun. Pure Appl. Anal., 6 (2007), 453. doi: 10.3934/cpaa.2007.6.453. Google Scholar

[12]

M. Li and D. Chen, A Liouville type theorem for an integral system,, Commun. Pure Appl. Anal., 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855. Google Scholar

[13]

M. Li and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943. doi: 10.1016/j.jmaa.2007.12.064. Google Scholar

[14]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,'', Princeton Mathematical Series, (1970). Google Scholar

show all references

References:
[1]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations,, Discrete Contin. Dyn. Syst., (2005), 164. Google Scholar

[2]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Commun. Pure Appl. Anal., 4 (2005), 1. doi: 10.3934/cpaa.2005.4.1. Google Scholar

[3]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar

[4]

W. Chen and C. Li, "Methods on Nonliear Elliptic Equations,'', AIMS Series on Differential Equations and Dynamical Systems, (2010). Google Scholar

[5]

W. Chen, C. Li and C. Ma, Regularity of solutions for an integral system of Wolff type,, preprint., (). Google Scholar

[6]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Discrete Contin. Dyn. Syst., 12 (2005), 347. doi: 0.3934/dcds.2005.12.347. Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Commun. Pure Appl. Math, 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[8]

L. Grafakos, "Classical and Modern Fourier Analysis,'', Pearson Education, (2004). Google Scholar

[9]

X. Han and G. Lu, Regularity of solutions to an integral system of Bessel potential,, preprint., (). Google Scholar

[10]

Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc. (JEMS), 6 (2004), 153. doi: 10.4171/JEMS/6. Google Scholar

[11]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations,, Commun. Pure Appl. Anal., 6 (2007), 453. doi: 10.3934/cpaa.2007.6.453. Google Scholar

[12]

M. Li and D. Chen, A Liouville type theorem for an integral system,, Commun. Pure Appl. Anal., 5 (2006), 855. doi: 10.3934/cpaa.2006.5.855. Google Scholar

[13]

M. Li and D. Chen, Radial symmetry and monotonicity for an integral equation,, J. Math. Anal. Appl., 342 (2008), 943. doi: 10.1016/j.jmaa.2007.12.064. Google Scholar

[14]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,'', Princeton Mathematical Series, (1970). Google Scholar

[1]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[2]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[3]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[4]

Yonggang Zhao, Mingxin Wang. An integral equation involving Bessel potentials on half space. Communications on Pure & Applied Analysis, 2015, 14 (2) : 527-548. doi: 10.3934/cpaa.2015.14.527

[5]

Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure & Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893

[6]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[7]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[8]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

[9]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[10]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[11]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[12]

Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469

[13]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[14]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[15]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[16]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[17]

Aram L. Karakhanyan. Lipschitz continuity of free boundary in the continuous casting problem with divergence form elliptic equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 261-277. doi: 10.3934/dcds.2016.36.261

[18]

Yutian Lei. Positive solutions of integral systems involving Bessel potentials. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2721-2737. doi: 10.3934/cpaa.2013.12.2721

[19]

Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure & Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031

[20]

Koya Nishimura. Global existence for the Boltzmann equation in $ L^r_v L^\infty_t L^\infty_x $ spaces. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1769-1782. doi: 10.3934/cpaa.2019083

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]