2009, 8(1): 311-333. doi: 10.3934/cpaa.2009.8.311

Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation

1. 

Dpto. E.D.A.N., University of Sevilla, Aptdo. 1160, 41080 Sevilla

2. 

Universite Pierre et Marie Curie-Paris6, UMR 7598 Laboratoire Jacques-Louis Lions, Paris, F-75005, France

3. 

Laboratoire de Mathématiques de Versailles, Université de Versailles - St. Quentin, 45 Avenue des Etats Unis, 78035 Versailles

Received  April 2008 Revised  August 2008 Published  October 2008

In this paper, we deal with the three-dimensional Boussinesq system. We prove the local exact controllability to the trajectories of this system when the control is supported in a small set.

The main objective of this paper is to present a new method to control systems associated to equations of fluid dynamics. This method consists of controlling the same system with an additional control acting on the divergence condition in a first step and lifting this condition in a second step. In this paper, we have chosen to apply this technique to the Boussinesq system.
Citation: Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311
[1]

T. Tachim Medjo, Louis Tcheugoue Tebou. Robust control problems in fluid flows. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 437-463. doi: 10.3934/dcds.2005.12.437

[2]

Nicolás Carreño. Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain. Mathematical Control & Related Fields, 2012, 2 (4) : 361-382. doi: 10.3934/mcrf.2012.2.361

[3]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[4]

Sorin Micu, Jaime H. Ortega, Lionel Rosier, Bing-Yu Zhang. Control and stabilization of a family of Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 273-313. doi: 10.3934/dcds.2009.24.273

[5]

Cheng-Zhong Xu, Gauthier Sallet. Multivariable boundary PI control and regulation of a fluid flow system. Mathematical Control & Related Fields, 2014, 4 (4) : 501-520. doi: 10.3934/mcrf.2014.4.501

[6]

Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya. Vertex control of flows in networks. Networks & Heterogeneous Media, 2008, 3 (4) : 709-722. doi: 10.3934/nhm.2008.3.709

[7]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[8]

Fritz Colonius, Paulo Régis C. Ruffino. Nonlinear Iwasawa decomposition of control flows. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 339-354. doi: 10.3934/dcds.2007.18.339

[9]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[10]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks & Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[11]

Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265

[12]

T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201

[13]

Enrique Fernández-Cara, Diego A. Souza. On the control of some coupled systems of the Boussinesq kind with few controls. Mathematical Control & Related Fields, 2012, 2 (2) : 121-140. doi: 10.3934/mcrf.2012.2.121

[14]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[15]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[16]

Tudor Bînzar, Cristian Lăzureanu. A Rikitake type system with one control. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1755-1776. doi: 10.3934/dcdsb.2013.18.1755

[17]

Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373

[18]

Jerzy Klamka, Helmut Maurer, Andrzej Swierniak. Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 195-216. doi: 10.3934/mbe.2017013

[19]

M. Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 557-571. doi: 10.3934/dcdsb.2017208

[20]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]