2009, 8(3): 1053-1065. doi: 10.3934/cpaa.2009.8.1053

Polynomial solutions of linear partial differential equations

1. 

Department of Engineering Sciences, Division of Applied Mathematics and Mechanics, University of Patras, 26500 Patras, Greece

2. 

Department of Mathematics, University of Patras, 26500 Patras, Greece

Received  March 2007 Revised  October 2007 Published  February 2009

In this paper it is proved that the condition

$\lambda=a_1 (n-2)(n-1)+\gamma_1 (m-2)(m-1)+\beta_1 (n-1)(m-1)+\delta_1 (n-1)+\epsilon_1 (m-1),$

where $n=1,2,...,N$, $m=1,2,...,M$ is a necessary and sufficient condition for the linear partial differential equation

$(a_1x^2+a_2x+a_3)u_{x x}+(\beta_1xy+\beta_2x+\beta_3y+\beta_4)u_{x y} $

$+(\gamma_1y^2+\gamma_2y+\gamma_3)u_{y y}+(\delta_1x+\delta_2)u_x+(\epsilon_1y+\epsilon_2)u_y=\lambda u, $

where $a_i$, $\beta_j$, $\gamma_i$, $\delta_s$, $\epsilon_s$, $i=1,2,3$, $j=1,2,3,4$, $s=1,2$ are real or complex constants, to have polynomial solutions of the form

$u(x,y)=\sum_{n=1}^N\sum_{m=1}^Mu_{n m}x^{n-1}y^{m-1}.$

The proof of this result is obtained using a functional analytic method which reduces the problem of polynomial solutions of such partial differential equations to an eigenvalue problem of a specific linear operator in an abstract Hilbert space. The main result of this paper generalizes previously obtained results by other researchers.

Citation: Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053
[1]

Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

[2]

Marianne Beringhier, Adrien Leygue, Francisco Chinesta. Parametric nonlinear PDEs with multiple solutions: A PGD approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 383-392. doi: 10.3934/dcdss.2016002

[3]

T. Gallouët, J.-C. Latché. Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2371-2391. doi: 10.3934/cpaa.2012.11.2371

[4]

Deconinck Bernard, Olga Trichtchenko. High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1323-1358. doi: 10.3934/dcds.2017055

[5]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[6]

Eugenia N. Petropoulou, Panayiotis D. Siafarikas. A functional-analytic technique for the study of analytic solutions of PDEs. Conference Publications, 2015, 2015 (special) : 923-935. doi: 10.3934/proc.2015.0923

[7]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[8]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[9]

Jérôme Coville, Nicolas Dirr, Stephan Luckhaus. Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks & Heterogeneous Media, 2010, 5 (4) : 745-763. doi: 10.3934/nhm.2010.5.745

[10]

Daxiong Piao, Xiang Sun. Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials. Communications on Pure & Applied Analysis, 2014, 13 (2) : 645-655. doi: 10.3934/cpaa.2014.13.645

[11]

Kuan-Ju Huang, Yi-Jung Lee, Tzung-Shin Yeh. Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1497-1514. doi: 10.3934/cpaa.2016.15.1497

[12]

Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071

[13]

Enrico Valdinoci. Contemporary PDEs between theory and applications. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : i-i. doi: 10.3934/dcds.2015.35.12i

[14]

Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387

[15]

Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems & Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737

[16]

Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048

[17]

Tomás Caraballo, José A. Langa, José Valero. Stabilisation of differential inclusions and PDEs without uniqueness by noise. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1375-1392. doi: 10.3934/cpaa.2008.7.1375

[18]

Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081

[19]

Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1553-1570. doi: 10.3934/dcds.2010.27.1553

[20]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

[Back to Top]