• Previous Article
    Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations
  • CPAA Home
  • This Issue
  • Next Article
    Smoothing transformation and piecewise polynomial projection methods for weakly singular Fredholm integral equations
June  2006, 5(2): 383-393. doi: 10.3934/cpaa.2006.5.383

Bifurcation analysis to Rayleigh-Bénard convection in finite box with up-down symmetry

1. 

Graduate School of Engineering Science, Osaka University, 560-8531 Toyonaka, Japan

Received  February 2005 Revised  June 2005 Published  March 2006

Rayleigh-Bénard convection in a small rectangular domain is studied by the standard bifurcation analysis. The dynamics on the center manifold is calculated up to 3rd order. By this normal form, it is possible to determine the local bifurcation structures in principle. One can easily imagine that mixed mode solutions such as hexagonal, patchwork-quilt patterns are unstable from the knowledge of amplitude equation:Ginzburg-Landau equation. However they are not necessarily similar to each other in a small rectangular domain. Several non-trivial stable mixed mode patterns are introduced.
Citation: Toshiyuki Ogawa. Bifurcation analysis to Rayleigh-Bénard convection in finite box with up-down symmetry. Communications on Pure & Applied Analysis, 2006, 5 (2) : 383-393. doi: 10.3934/cpaa.2006.5.383
[1]

Tian Ma, Shouhong Wang. Attractor bifurcation theory and its applications to Rayleigh-Bénard convection. Communications on Pure & Applied Analysis, 2003, 2 (4) : 591-599. doi: 10.3934/cpaa.2003.2.591

[2]

Jungho Park. Dynamic bifurcation theory of Rayleigh-Bénard convection with infinite Prandtl number. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 591-604. doi: 10.3934/dcdsb.2006.6.591

[3]

B. A. Wagner, Andrea L. Bertozzi, L. E. Howle. Positive feedback control of Rayleigh-Bénard convection. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 619-642. doi: 10.3934/dcdsb.2003.3.619

[4]

Tingyuan Deng. Three-dimensional sphere $S^3$-attractors in Rayleigh-Bénard convection. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 577-591. doi: 10.3934/dcdsb.2010.13.577

[5]

Björn Birnir, Nils Svanstedt. Existence theory and strong attractors for the Rayleigh-Bénard problem with a large aspect ratio. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 53-74. doi: 10.3934/dcds.2004.10.53

[6]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[7]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[8]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[9]

Marco Cabral, Ricardo Rosa, Roger Temam. Existence and dimension of the attractor for the Bénard problem on channel-like domains. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 89-116. doi: 10.3934/dcds.2004.10.89

[10]

O. V. Kapustyan, V. S. Melnik, José Valero. A weak attractor and properties of solutions for the three-dimensional Bénard problem. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 449-481. doi: 10.3934/dcds.2007.18.449

[11]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

[12]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[13]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[14]

Yong Duan, Jian-Guo Liu. Convergence analysis of the vortex blob method for the $b$-equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1995-2011. doi: 10.3934/dcds.2014.34.1995

[15]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[16]

Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357

[17]

Chun-Hsiung Hsia, Tian Ma, Shouhong Wang. Bifurcation and stability of two-dimensional double-diffusive convection. Communications on Pure & Applied Analysis, 2008, 7 (1) : 23-48. doi: 10.3934/cpaa.2008.7.23

[18]

Feng-mei Tao, Lan-sun Chen, Li-xian Xia. Correspondence analysis of body form characteristics of Chinese ethnic groups. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 769-776. doi: 10.3934/dcdsb.2004.4.769

[19]

Suxia Zhang, Hongbin Guo, Robert Smith?. Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1291-1313. doi: 10.3934/mbe.2018060

[20]

Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]