2002, 1(4): 457-474. doi: 10.3934/cpaa.2002.1.457

Some existence and concentration results for nonlinear Schrödinger equations

1. 

Dipartimento di Matematica, Universita di Bari, via E. Orabona 4, 70125 Bari, Italy

Received  February 2002 Revised  May 2002 Published  September 2002

In this paper we are concerned with the existence of solutions with non-vanishing angular momentum for a class of nonlinear Schrödinger equations of the form

$ i \h$$ \frac{\partial\psi}{\partial t}=-$ $\frac{ \h^2}{2m}\Delta \psi+V(x)\psi-\gamma|\psi|^{p-2}\psi,$ $\gamma>0,$ $ x\in\mathbb R^{N}$

where $\h$$ >0$, $p>2$, $\psi:\mathbb R^{N}\rightarrow\mathbb C,$ and the potential $V$ satisfies some symmetric properties. In particular the cases $N=2$ with $V$ radially symmetric and $N=3$ with $V$ having a cylindrical symmetry are discussed. Our main purpose is to study the asymptotic behaviour of such solutions in the semiclassical limit (i.e. as $\hbar \rightarrow 0^+$) when a concentration phenomenon around a point of $\mathbb R^N$ appears.

Citation: Teresa D'Aprile. Some existence and concentration results for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2002, 1 (4) : 457-474. doi: 10.3934/cpaa.2002.1.457
[1]

Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599

[2]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[3]

Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13

[4]

Claudio Meneses. Linear phase space deformations with angular momentum symmetry. Journal of Geometric Mechanics, 2019, 11 (1) : 45-58. doi: 10.3934/jgm.2019003

[5]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

[6]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[7]

Xu Zhang. On the concentration of semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5389-5413. doi: 10.3934/dcds.2018238

[8]

Li Chen, Xiu-Qing Chen, Ansgar Jüngel. Semiclassical limit in a simplified quantum energy-transport model for semiconductors. Kinetic & Related Models, 2011, 4 (4) : 1049-1062. doi: 10.3934/krm.2011.4.1049

[9]

Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111

[10]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[11]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[12]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

[13]

Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure & Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417

[14]

Minbo Yang, Yanheng Ding. Existence and multiplicity of semiclassical states for a quasilinear Schrödinger equation in $\mathbb{R}^N$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 429-449. doi: 10.3934/cpaa.2013.12.429

[15]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[16]

Venkateswaran P. Krishnan, Ramesh Manna, Suman Kumar Sahoo, Vladimir A. Sharafutdinov. Momentum ray transforms. Inverse Problems & Imaging, 2019, 13 (3) : 679-701. doi: 10.3934/ipi.2019031

[17]

César E. Torres Ledesma. Existence and concentration of solutions for a non-linear fractional Schrödinger equation with steep potential well. Communications on Pure & Applied Analysis, 2016, 15 (2) : 535-547. doi: 10.3934/cpaa.2016.15.535

[18]

Casimir Emako, Luís Neves de Almeida, Nicolas Vauchelet. Existence and diffusive limit of a two-species kinetic model of chemotaxis. Kinetic & Related Models, 2015, 8 (2) : 359-380. doi: 10.3934/krm.2015.8.359

[19]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[20]

Giuseppina di Blasio, Filomena Feo, Maria Rosaria Posteraro. Existence results for nonlinear elliptic equations related to Gauss measure in a limit case. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1497-1506. doi: 10.3934/cpaa.2008.7.1497

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]