doi: 10.3934/bdia.2017013

What can we learn about the Middle East Respiratory Syndrome (MERS) outbreak from tweets?

1. 

School of Nursing, Columbia University Medical Center, New York, NY, 10032, USA

2. 

Department of Mathematics, UCLA, Los Angeles, CA, 90095, USA

3. 

Digital Library, UCLA, Los Angeles, CA, 90095, USA

4. 

Department of Nursing, Hoseo University, Asan, South Korea

* Corresponding author: Sunmoo Yoon, RN, PhD, Associate Research Scientist, Columbia University, sy2102@columbia.edu

Published  November 2017

Middle East Respiratory Syndrome (MERS, 메르스 in Korean) is an emerging deadly viral respiratory disease with no treatment. This study applied a triangulation approach of quantitative structure and content mining techniques while incorporating qualitative approaches guided by domain experts, to understand #MERS and #메르스 tweets. This study sought to gain insights about culturally-appropriate nursing activities for an emerging global acute disease management.

Citation: Sunmoo Yoon, Da Kuang, Peter Broadwell, Haeyoung Lee, Michelle Odlum. What can we learn about the Middle East Respiratory Syndrome (MERS) outbreak from tweets?. Big Data & Information Analytics, doi: 10.3934/bdia.2017013
References:
[1]

D. M. BleiA. Y. Ng and M. I. Jordan, Latent dirichlet allocation, Journal of machine Learning research, 3 (2003), 993-1022.

[2]

P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A. Bliss and C. M. Danforth, Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter, PloS one, 6 (2011), e26752. doi: 10.1371/journal.pone.0026752.

[3]

J. Fawcett and C. H. Ellenbecker, A proposed conceptual model of nursing and population health, Nursing outlook, 63 (2015), 288-298. doi: 10.1016/j.outlook.2015.01.009.

[4]

D. Kuang and H. Park, Fast rank-2 nonnegative matrix factorization for hierarchical document clustering, in Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2013,739-747. doi: 10.1145/2487575.2487606.

[5]

M. Lui and T. Baldwin, Cross-domain feature selection for language identification, in Proceedings of 5th International Joint Conference on Natural Language Processing, Citeseer, 2011.

[6]

S. Yoon and S. Bakken, Methods of knowledge discovery in tweets, in NI 2012: Proceedings of the 11th International Congress on Nursing Informatics, vol. 2012, American Medical Informatics Association, 2012.

show all references

References:
[1]

D. M. BleiA. Y. Ng and M. I. Jordan, Latent dirichlet allocation, Journal of machine Learning research, 3 (2003), 993-1022.

[2]

P. S. Dodds, K. D. Harris, I. M. Kloumann, C. A. Bliss and C. M. Danforth, Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter, PloS one, 6 (2011), e26752. doi: 10.1371/journal.pone.0026752.

[3]

J. Fawcett and C. H. Ellenbecker, A proposed conceptual model of nursing and population health, Nursing outlook, 63 (2015), 288-298. doi: 10.1016/j.outlook.2015.01.009.

[4]

D. Kuang and H. Park, Fast rank-2 nonnegative matrix factorization for hierarchical document clustering, in Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2013,739-747. doi: 10.1145/2487575.2487606.

[5]

M. Lui and T. Baldwin, Cross-domain feature selection for language identification, in Proceedings of 5th International Joint Conference on Natural Language Processing, Citeseer, 2011.

[6]

S. Yoon and S. Bakken, Methods of knowledge discovery in tweets, in NI 2012: Proceedings of the 11th International Congress on Nursing Informatics, vol. 2012, American Medical Informatics Association, 2012.

Figure 1.  Sentiment of #MERS (top) #메르스 tweets (bottom)
Figure 2.  Content of #MERS and #메르스 tweets
Figure 3.  Communication network of #MERS & #메르스 tweets
[1]

Qin Wang, Laijun Zhao, Rongbing Huang, Youping Yang, Jianhong Wu. Interaction of media and disease dynamics and its impact on emerging infection management. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 215-230. doi: 10.3934/dcdsb.2015.20.215

[2]

Giancarlo Bigi. Componentwise versus global approaches to nonsmooth multiobjective optimization. Journal of Industrial & Management Optimization, 2005, 1 (1) : 21-32. doi: 10.3934/jimo.2005.1.21

[3]

Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217

[4]

Mehdi Pourbarat. On the arithmetic difference of middle Cantor sets. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4259-4278. doi: 10.3934/dcds.2018186

[5]

Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567

[6]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[7]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[8]

Samantha Erwin, Stanca M. Ciupe. Germinal center dynamics during acute and chronic infection. Mathematical Biosciences & Engineering, 2017, 14 (3) : 655-671. doi: 10.3934/mbe.2017037

[9]

Frédéric Bernicot, Bertrand Maury, Delphine Salort. A 2-adic approach of the human respiratory tree. Networks & Heterogeneous Media, 2010, 5 (3) : 405-422. doi: 10.3934/nhm.2010.5.405

[10]

Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175

[11]

Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643

[12]

Irene I. Bouw, Sabine Kampf. Syndrome decoding for Hermite codes with a Sugiyama-type algorithm. Advances in Mathematics of Communications, 2012, 6 (4) : 419-442. doi: 10.3934/amc.2012.6.419

[13]

Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995

[14]

Robinson Duque, Alejandro Arbelaez, Juan Francisco Díaz. CP and MIP approaches for soccer analysis. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-30. doi: 10.3934/jimo.2018109

[15]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[16]

Wendi Wang. Population dispersal and disease spread. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797

[17]

Aslak Tveito, Glenn T. Lines, Pan Li, Andrew McCulloch. Defining candidate drug characteristics for Long-QT (LQT3) syndrome. Mathematical Biosciences & Engineering, 2011, 8 (3) : 861-873. doi: 10.3934/mbe.2011.8.861

[18]

Gregory Zitelli, Seddik M. Djouadi, Judy D. Day. Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1127-1139. doi: 10.3934/mbe.2015.12.1127

[19]

Wenxiong Chen, Congming Li. Some new approaches in prescribing gaussian and salar curvature. Conference Publications, 1998, 1998 (Special) : 148-159. doi: 10.3934/proc.1998.1998.148

[20]

H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Hien T. Tran. A comparison of nonlinear filtering approaches in the context of an HIV model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 213-236. doi: 10.3934/mbe.2010.7.213

 Impact Factor: 

Metrics

  • PDF downloads (26)
  • HTML views (611)
  • Cited by (0)

[Back to Top]