2017, 2(2): 119-125. doi: 10.3934/bdia.2017004

Proportional association based roi model

1. 

School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006, China

2. 

Clearpier Inc., 1300-121 Richmond St. W., Toronto, Ontario M5H 2K1 Canada

3. 

School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006, China

* Corresponding authors: Wenxue Huang and Lihong Zheng.

* Corresponding authors: Wenxue Huang and Lihong Zheng.

Published  April 2017

Based on a local-to-global proportional association measure proposed by Huang, Shi and Wang [9], with cost and revenue information known, an association measure is proposed to maximize the expected RoI. A descriptive experiment with a synthetical data set is presented.

Citation: Wenxue Huang, Yuanyi Pan, Lihong Zheng. Proportional association based roi model. Big Data & Information Analytics, 2017, 2 (2) : 119-125. doi: 10.3934/bdia.2017004
References:
[1]

C. Cornforth, What makes boards effctive? an examination of the relationships between board inputs, structures, processes and effctiveness in non-profit organisations, Corporate Governance: An International Review, 9 (2011), 217-227.

[2]

L. L. Fong, M. S. Squillante, R. E. Hough, Computer resource proportional utilization and response time scheduling, US Patent, 6 (2001), 263-359.

[3]

L. A. Goodman, A single general method for the analysis of cross-classifed data: Reconciliation, and synthesis of some methods of pearson, yule, and fisher, and also some methods of correspondence analysis and association analysis, Journal of the American Statistical Association, 91 (1996), 408-428. doi: 10.1080/01621459.1996.10476702.

[4]

L. A. Goodman and W. H. Kruskal, Measures of Association for Cross Classifications Springer, 1979.

[5]

M. F. Gregor, L. Yang, E. Fabbrini, B. S. Mohammed, J. C. Eagon, G. S. Hotamisligil, S. Klein, Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss, Diabetes, 58 (2009), 693-700. doi: 10.2337/db08-1220.

[6]

W. Huang, Y. Pan, On balancing between optimal and proportional categorical predictions, Big Data and Information Analytics, 1 (2016), 129-137. doi: 10.3934/bdia.2016.1.129.

[7]

W. Huang, Y. Pan, J. Wu, Supervised discretization with GK-τ, Procedia Computer Science, 17 (2013), 114-120.

[8]

W. Huang, Y. Pan, J. Wu, Performance measures of rare events targeting, International Journal of Data Analysis Techniques and Strategies, 6 (2014), 105-120. doi: 10.1504/IJDATS.2014.062450.

[9]

W. Huang, Y. Shi, X. Wang, A nominal association matrix with feature selection for categorical data, Comunications in Statistic -Theory and Methods, 46 (2017), 7798-7819. doi: 10.1080/03610926.2014.930911.

[10]

H. Hwang, T. Jung, E. Suh, An ltv model and customer segmentation based on customer value: A case study on the wireless telecommunication industry, Expert Systems with Applications, 26 (2004), 181-188. doi: 10.1016/S0957-4174(03)00133-7.

[11]

T. Lin, Y. Yang, H. T. Shiau, A work weighted state vector control method for geometrically nonlinear analysis, Computers and Structures, 46 (1993), 689-694. doi: 10.1016/0045-7949(93)90397-V.

[12]

C. X. Ling, C. Li, Data mining for direct marketing: Problems and solutions, in Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98), AAAI Press, (1998), 73-79.

[13]

J. R. Quinlan, Induction of decision trees, Machine Learning, 1 (1986), 81-106. doi: 10.1007/BF00116251.

show all references

References:
[1]

C. Cornforth, What makes boards effctive? an examination of the relationships between board inputs, structures, processes and effctiveness in non-profit organisations, Corporate Governance: An International Review, 9 (2011), 217-227.

[2]

L. L. Fong, M. S. Squillante, R. E. Hough, Computer resource proportional utilization and response time scheduling, US Patent, 6 (2001), 263-359.

[3]

L. A. Goodman, A single general method for the analysis of cross-classifed data: Reconciliation, and synthesis of some methods of pearson, yule, and fisher, and also some methods of correspondence analysis and association analysis, Journal of the American Statistical Association, 91 (1996), 408-428. doi: 10.1080/01621459.1996.10476702.

[4]

L. A. Goodman and W. H. Kruskal, Measures of Association for Cross Classifications Springer, 1979.

[5]

M. F. Gregor, L. Yang, E. Fabbrini, B. S. Mohammed, J. C. Eagon, G. S. Hotamisligil, S. Klein, Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss, Diabetes, 58 (2009), 693-700. doi: 10.2337/db08-1220.

[6]

W. Huang, Y. Pan, On balancing between optimal and proportional categorical predictions, Big Data and Information Analytics, 1 (2016), 129-137. doi: 10.3934/bdia.2016.1.129.

[7]

W. Huang, Y. Pan, J. Wu, Supervised discretization with GK-τ, Procedia Computer Science, 17 (2013), 114-120.

[8]

W. Huang, Y. Pan, J. Wu, Performance measures of rare events targeting, International Journal of Data Analysis Techniques and Strategies, 6 (2014), 105-120. doi: 10.1504/IJDATS.2014.062450.

[9]

W. Huang, Y. Shi, X. Wang, A nominal association matrix with feature selection for categorical data, Comunications in Statistic -Theory and Methods, 46 (2017), 7798-7819. doi: 10.1080/03610926.2014.930911.

[10]

H. Hwang, T. Jung, E. Suh, An ltv model and customer segmentation based on customer value: A case study on the wireless telecommunication industry, Expert Systems with Applications, 26 (2004), 181-188. doi: 10.1016/S0957-4174(03)00133-7.

[11]

T. Lin, Y. Yang, H. T. Shiau, A work weighted state vector control method for geometrically nonlinear analysis, Computers and Structures, 46 (1993), 689-694. doi: 10.1016/0045-7949(93)90397-V.

[12]

C. X. Ling, C. Li, Data mining for direct marketing: Problems and solutions, in Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98), AAAI Press, (1998), 73-79.

[13]

J. R. Quinlan, Induction of decision trees, Machine Learning, 1 (1986), 81-106. doi: 10.1007/BF00116251.

Table 1.  Contingency tables:$X_1$ vs $Y$ and $X_2$ vs $Y$
$X_1|Y$ $y_1$ $y_2$ $y_{3}$ $y_{4}$ $X_2|Y$ $y_1$ $y_2$ $y_{3}$ $y_{4}$
$x_{1_1}$ 1000 100 500 400 $x_{2_1}$ 500 300 200 1500
$x_{1_2}$ 200 1500 500 300 $x_{2_2}$ 500 400 400 50
$x_{1_3}$ 400 50 500 500 $x_{2_3}$ 500 500 300 700
$x_{1_4}$ 300 700 500 400 $x_{2_4}$ 500 400 1000 100
$x_{1_5}$ 200 500 400 200 $x_{2_5}$ 200 400 500 200
$X_1|Y$ $y_1$ $y_2$ $y_{3}$ $y_{4}$ $X_2|Y$ $y_1$ $y_2$ $y_{3}$ $y_{4}$
$x_{1_1}$ 1000 100 500 400 $x_{2_1}$ 500 300 200 1500
$x_{1_2}$ 200 1500 500 300 $x_{2_2}$ 500 400 400 50
$x_{1_3}$ 400 50 500 500 $x_{2_3}$ 500 500 300 700
$x_{1_4}$ 300 700 500 400 $x_{2_4}$ 500 400 1000 100
$x_{1_5}$ 200 500 400 200 $x_{2_5}$ 200 400 500 200
Table 2.  Association matrices:$X_1$ vs $Y$ and $X_2$ vs $Y$
$Y|\hat{Y}$ $\hat{y_1}|X_1$ $\hat{y_2}|X_1$ $\hat{y_3}|X_1$ $\hat{y_4}|X_1$ $Y|\hat{Y}$ $\hat{y_1}|X_2$ $\hat{y_2}|X_2$ $\hat{y_3}|X_2$ $\hat{y_4}X_2$
$y_1$ 0.34 0.18 0.27 0.22 $y_1$ 0.26 0.22 0.27 0.25
$y_2$ 0.13 0.48 0.24 0.15 $y_2$ 0.25 0.24 0.29 0.23
$y_{3}$ 0.24 0.28 0.27 0.21 $y_{3}$ 0.25 0.24 0.36 0.15
$y_{4}$ 0.25 0.25 0.28 0.22 $y_{4}$ 0.22 0.18 0.14 0.46
$Y|\hat{Y}$ $\hat{y_1}|X_1$ $\hat{y_2}|X_1$ $\hat{y_3}|X_1$ $\hat{y_4}|X_1$ $Y|\hat{Y}$ $\hat{y_1}|X_2$ $\hat{y_2}|X_2$ $\hat{y_3}|X_2$ $\hat{y_4}X_2$
$y_1$ 0.34 0.18 0.27 0.22 $y_1$ 0.26 0.22 0.27 0.25
$y_2$ 0.13 0.48 0.24 0.15 $y_2$ 0.25 0.24 0.29 0.23
$y_{3}$ 0.24 0.28 0.27 0.21 $y_{3}$ 0.25 0.24 0.36 0.15
$y_{4}$ 0.25 0.25 0.28 0.22 $y_{4}$ 0.22 0.18 0.14 0.46
Table 3.  Contingency table for correct predictions: $W_1$ and $W_2$
$X_1|Y$ $y_1$ $y_2$ $y_{3}$ $y_{4}$ $X_2|Y$ $y_1$ $y_2$ $y_{3}$ $y_{4}$
$x_{1_1}$ 471 6 121 83 $x_{2_1}$ 98 34 19 926
$x_{1_2}$ 101 746 159 107 $x_{2_2}$ 177 114 113 1
$x_{1_3}$ 130 1 167 157 $x_{2_3}$ 114 124 42 256
$x_{1_4}$ 44 243 145 85 $x_{2_4}$ 109 81 489 6
$x_{1_5}$ 21 210 114 32 $x_{2_5}$ 36 119 206 28
$X_1|Y$ $y_1$ $y_2$ $y_{3}$ $y_{4}$ $X_2|Y$ $y_1$ $y_2$ $y_{3}$ $y_{4}$
$x_{1_1}$ 471 6 121 83 $x_{2_1}$ 98 34 19 926
$x_{1_2}$ 101 746 159 107 $x_{2_2}$ 177 114 113 1
$x_{1_3}$ 130 1 167 157 $x_{2_3}$ 114 124 42 256
$x_{1_4}$ 44 243 145 85 $x_{2_4}$ 109 81 489 6
$x_{1_5}$ 21 210 114 32 $x_{2_5}$ 36 119 206 28
Table 4.  Association measures: $\omega^{Y|X}$, and $\widehat{\omega}^{Y|X}$
$X $ $\omega^{Y|X}$ $\widehat{\omega}^{Y|X}$ total revenue average revenue
$X_1$ 0.3406 0.456 4313 0.4714
$X_2$ 0.3391 0.564 5178 0.5659
$X $ $\omega^{Y|X}$ $\widehat{\omega}^{Y|X}$ total revenue average revenue
$X_1$ 0.3406 0.456 4313 0.4714
$X_2$ 0.3391 0.564 5178 0.5659
Table 5.  Association with/without cost vectors: $X_1$ and $X_2$
$X $ $\omega^{Y|X}$ $\widehat{\omega}^{Y|X}$ $\bar{\omega}^{Y|X}$ total profit average profit
$X_1$ 0.3406 0.3406 1.3057 12016.17 1.3132
$X_2$ 0.3391 0.3391 1.8546 17072.17 1.8658
$X $ $\omega^{Y|X}$ $\widehat{\omega}^{Y|X}$ $\bar{\omega}^{Y|X}$ total profit average profit
$X_1$ 0.3406 0.3406 1.3057 12016.17 1.3132
$X_2$ 0.3391 0.3391 1.8546 17072.17 1.8658
Table 6.  Association with/without new cost vectors: $X_1$ and $X_2$
$X $ $\omega^{Y|X}$ $\widehat{\omega}^{Y|X}$ $\bar{\omega}^{Y|X}$ total profit average profit
$X_1$ 0.3406 0.3406 1.7420 15938.17 1.7419
$X_2$ 0.3391 0.3391 1.3424 12268.17 1.3408
$X $ $\omega^{Y|X}$ $\widehat{\omega}^{Y|X}$ $\bar{\omega}^{Y|X}$ total profit average profit
$X_1$ 0.3406 0.3406 1.7420 15938.17 1.7419
$X_2$ 0.3391 0.3391 1.3424 12268.17 1.3408
Table 7.  Simulated feature selection: one variable
$X$ $|Dmn(X)|$ $\omega^{Y|X}$ $\bar{\omega}^{Y|X}$ total profit average profit
$V_1$ 7 0.3906 3.5381 35390 3.5390
$V_2$ 4 0.3882 3.8433 38771 3.8771
$V_{3}$ 4 0.3250 4.8986 48678 4.8678
$V_{4}$ 8 0.3274 3.7050 36889 3.6889
$X$ $|Dmn(X)|$ $\omega^{Y|X}$ $\bar{\omega}^{Y|X}$ total profit average profit
$V_1$ 7 0.3906 3.5381 35390 3.5390
$V_2$ 4 0.3882 3.8433 38771 3.8771
$V_{3}$ 4 0.3250 4.8986 48678 4.8678
$V_{4}$ 8 0.3274 3.7050 36889 3.6889
Table 8.  Simulated feature selection: two variables
$X_1, X_2$ $|Dmn(X_1, X_2)|$ $\omega^{Y|(X_1, X_2)}$ $\bar{\omega}^{Y|(X_1, X_2)}$ total profit average profit
$V_1,V_2$ 28 0.4367 1.8682 18971 1.8971
$V_1, V_{3}$ 28 0.4025 2.1106 20746 2.0746
$V_1, V_{4}$ 56 0.4055 1.8055 17915 1.7915
$V_{3}, V_2$ 16 0.4055 2.3585 24404 2.4404
$V_{3}, V_{4}$ 32 0.3385 2.0145 19903 1.9903
$X_1, X_2$ $|Dmn(X_1, X_2)|$ $\omega^{Y|(X_1, X_2)}$ $\bar{\omega}^{Y|(X_1, X_2)}$ total profit average profit
$V_1,V_2$ 28 0.4367 1.8682 18971 1.8971
$V_1, V_{3}$ 28 0.4025 2.1106 20746 2.0746
$V_1, V_{4}$ 56 0.4055 1.8055 17915 1.7915
$V_{3}, V_2$ 16 0.4055 2.3585 24404 2.4404
$V_{3}, V_{4}$ 32 0.3385 2.0145 19903 1.9903
[1]

Cheng-Kang Chen, Yi-Xiang Liao. A deteriorating inventory model for an intermediary firm under return on inventory investment maximization. Journal of Industrial & Management Optimization, 2014, 10 (4) : 989-1000. doi: 10.3934/jimo.2014.10.989

[2]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control & Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[3]

Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311

[4]

F. Zeyenp Sargut, H. Edwin Romeijn. Capacitated requirements planning with pricing flexibility and general cost and revenue functions. Journal of Industrial & Management Optimization, 2007, 3 (1) : 87-98. doi: 10.3934/jimo.2007.3.87

[5]

Sandeep Dulluri, N. R. Srinivasa Raghavan. Revenue management via multi-product available to promise. Journal of Industrial & Management Optimization, 2007, 3 (3) : 457-479. doi: 10.3934/jimo.2007.3.457

[6]

Steven T. Dougherty, Jon-Lark Kim, Patrick Solé. Double circulant codes from two class association schemes. Advances in Mathematics of Communications, 2007, 1 (1) : 45-64. doi: 10.3934/amc.2007.1.45

[7]

Beniamin Mounits, Tuvi Etzion, Simon Litsyn. New upper bounds on codes via association schemes and linear programming. Advances in Mathematics of Communications, 2007, 1 (2) : 173-195. doi: 10.3934/amc.2007.1.173

[8]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[9]

Wenxue Huang, Yuanyi Pan. On balancing between optimal and proportional categorical predictions. Big Data & Information Analytics, 2016, 1 (1) : 129-137. doi: 10.3934/bdia.2016.1.129

[10]

Lars Olsen. First return times: multifractal spectra and divergence points. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635

[11]

Paulina Grzegorek, Michal Kupsa. Exponential return times in a zero-entropy process. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1339-1361. doi: 10.3934/cpaa.2012.11.1339

[12]

Jean-René Chazottes, Renaud Leplaideur. Fluctuations of the nth return time for Axiom A diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 399-411. doi: 10.3934/dcds.2005.13.399

[13]

V. Chaumoître, M. Kupsa. k-limit laws of return and hitting times. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 73-86. doi: 10.3934/dcds.2006.15.73

[14]

Hans-Otto Walther. Contracting return maps for monotone delayed feedback. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 259-274. doi: 10.3934/dcds.2001.7.259

[15]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[16]

Ming Yang, Chulin Li. Valuing investment project in competitive environment. Conference Publications, 2003, 2003 (Special) : 945-950. doi: 10.3934/proc.2003.2003.945

[17]

Adrien Nguyen Huu. Investment under uncertainty, competition and regulation. Journal of Dynamics & Games, 2014, 1 (4) : 579-598. doi: 10.3934/jdg.2014.1.579

[18]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[19]

Anarina L. Murillo, Muntaser Safan, Carlos Castillo-Chavez, Elizabeth D. Capaldi Phillips, Devina Wadhera. Modeling eating behaviors: The role of environment and positive food association learning via a Ratatouille effect. Mathematical Biosciences & Engineering, 2016, 13 (4) : 841-855. doi: 10.3934/mbe.2016020

[20]

William Thomson. For claims problems, another compromise between the proportional and constrained equal awards rules. Journal of Dynamics & Games, 2015, 2 (3/4) : 363-382. doi: 10.3934/jdg.2015011

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]