October 2016, 1(4): 391-401. doi: 10.3934/bdia.2016017

On identifiability of 3-tensors of multilinear rank $(1,\ L_{r},\ L_{r})$

1. 

Department of Computer Science, Southern Illinois University-Carbondale, Carbondale, IL 62901, USA

2. 

Department of Mathematics, Lamar University, Beaumont, TX 77710, USA

3. 

Department of Mathematics, Southern Illinois University-Carbondale, Carbondale, IL 62901, USA

* Corresponding author: Qiang Cheng, Mingqing Xiao. This research is supported in part by NSF-DMS 1419028 and NSF-IIS 1218712 of United States

Revised  May 2017 Published  May 2017

In this paper, we study a specific big data model via multilinear rank tensor decompositions. The model approximates to a given tensor by the sum of multilinear rank $(1, \ L_{r}, \ L_{r})$ terms. And we characterize the identifiability property of this model from a geometric point of view. Our main results consists of exact identifiability and generic identifiability. The arguments of generic identifiability relies on the exact identifiability, which is in particular closely related to the well-known "trisecant lemma" in the context of algebraic geometry (see Proposition 2.6 in [1]). This connection discussed in this paper demonstrates a clear geometric picture of this model.

Citation: Ming Yang, Dunren Che, Wen Liu, Zhao Kang, Chong Peng, Mingqing Xiao, Qiang Cheng. On identifiability of 3-tensors of multilinear rank $(1,\ L_{r},\ L_{r})$. Big Data & Information Analytics, 2016, 1 (4) : 391-401. doi: 10.3934/bdia.2016017
References:
[1]

L. Chiantini and C. Ciliberto, Weakly defective varieties, Transactions of the American Mathematical Society, 354 (2002), 151-178. doi: 10.1090/S0002-9947-01-02810-0.

[2]

L. Chiantini and G. Ottaviani, On generic identifiability of 3-tensors of small rank, SIAM Journal on Matrix Analysis and Applications, 33 (2012), 1018-1037. doi: 10.1137/110829180.

[3]

L. ChiantiniG. Ottaviani and N. Vannieuwenhoven, An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 1265-1287. doi: 10.1137/140961389.

[4]

A. CichockiD. MandicL. De LathauwerG. ZhouQ. ZhaoC. Caiafa and H. Phan, Tensor decompositions for signal processing applications: From two-way to multiway component analysis, Signal Processing Magazine, IEEE, 32 (2015), 145-163. doi: 10.1109/MSP.2013.2297439.

[5]

P. Comon, Tensor decompositions, State of the art and applications, J. G. McWhirter and I. K. Proudler. Mathematics in Signal Processing V, Clarendon Press, Oxford, 71 (2002), 1-24.

[6]

L. DeLathauwer, Decompositions of a higher-order tensor in block terms-part Ⅰ: Lemmas for partitioned matrices, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 1022-1032. doi: 10.1137/060661685.

[7]

L. DeLathauwer, Decompositions of a higher-order tensor in block terms-part Ⅱ: Definitions and uniqueness, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 1033-1066. doi: 10.1137/070690729.

[8]

L. DeLathauwer and D. Nion, Decompositions of a higher-order tensor in block terms-part Ⅲ: Alternating least squares algorithms, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 1067-1083. doi: 10.1137/070690730.

[9]

I. Domanov and L. DeLathauwer, Generic uniqueness of a structured matrix factorization and applications in blind source separation, IEEE Journal of Selected Topics in Signal Processing, 10 (2016), 701-711. doi: 10.1109/JSTSP.2016.2526971.

[10]

I. Domanov and L. De Lathauwer, Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL, SIAM Journal on Matrix Analysis and Applications, 36 (2015), 1567-1589. doi: 10.1137/140970276.

[11]

J. Draisma and J. Kuttler, Bounded-rank tensors are defined in bounded degree, Duke Mathematical Journal, 163 (2014), 35-63. doi: 10.1215/00127094-2405170.

[12]

J. D. Hauenstein and A. J. Sommese, Witness sets of projections, Applied Mathematics and Computation, Elsevier, 217 (2010), 3349-3354. doi: 10.1016/j.amc.2010.08.067.

[13]

J. D. Hauenstein and A. J. Sommese, Membership tests for images of algebraic sets by linear projections, Applied Mathematics and Computation, Elsevier, 219 (2013), 6809-6818. doi: 10.1016/j.amc.2012.12.060.

[14]

R. KeW. Li and M. Xiao, Characterization of extreme points of multi-stochastic tensors, Computational Methods in Applied Mathematics, 16 (2016), 459-474. doi: 10.1515/cmam-2016-0005.

[15]

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), 455-500. doi: 10.1137/07070111X.

[16]

J. M. Landsberg, Tensors: Geometry and Applications, AMS, Providence, Rhode Island, USA, 2012.

[17]

M. W. MahoneyL.-H. Lim and G. E. Carlsson, Algorithmic and statistical challenges in modern largescale data analysis are the focus of MMDS 2008, ACM SIGKDD Explorations Newsletter, 10 (2008), 57-60. doi: 10.1145/1540276.1540294.

[18]

F. Malgouyres and J. Landsberg, Stable recovery of the factors from a deep matrix product and application to convolutional network, preprint, arXiv: 1703. 08044.

[19]

Y. Matsushima (E. Kobayashi, translator), Differentiable Manifolds, Marcel Dekker, Inc. , North-Holland Publishing Co. , North Miami Beach, FL, U. S. A. , 1972.

[20]

E. E. PapalexakisC. Faloutsos and N. D. Sidiropoulos, Tensors for data mining and data fusion: Models, applications, and scalable algorithms, ACM Transactions on Intelligent Systems and Technology (TIST), 8 (2017), 1-44. doi: 10.1145/2915921.

show all references

References:
[1]

L. Chiantini and C. Ciliberto, Weakly defective varieties, Transactions of the American Mathematical Society, 354 (2002), 151-178. doi: 10.1090/S0002-9947-01-02810-0.

[2]

L. Chiantini and G. Ottaviani, On generic identifiability of 3-tensors of small rank, SIAM Journal on Matrix Analysis and Applications, 33 (2012), 1018-1037. doi: 10.1137/110829180.

[3]

L. ChiantiniG. Ottaviani and N. Vannieuwenhoven, An algorithm for generic and low-rank specific identifiability of complex tensors, SIAM Journal on Matrix Analysis and Applications, 35 (2014), 1265-1287. doi: 10.1137/140961389.

[4]

A. CichockiD. MandicL. De LathauwerG. ZhouQ. ZhaoC. Caiafa and H. Phan, Tensor decompositions for signal processing applications: From two-way to multiway component analysis, Signal Processing Magazine, IEEE, 32 (2015), 145-163. doi: 10.1109/MSP.2013.2297439.

[5]

P. Comon, Tensor decompositions, State of the art and applications, J. G. McWhirter and I. K. Proudler. Mathematics in Signal Processing V, Clarendon Press, Oxford, 71 (2002), 1-24.

[6]

L. DeLathauwer, Decompositions of a higher-order tensor in block terms-part Ⅰ: Lemmas for partitioned matrices, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 1022-1032. doi: 10.1137/060661685.

[7]

L. DeLathauwer, Decompositions of a higher-order tensor in block terms-part Ⅱ: Definitions and uniqueness, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 1033-1066. doi: 10.1137/070690729.

[8]

L. DeLathauwer and D. Nion, Decompositions of a higher-order tensor in block terms-part Ⅲ: Alternating least squares algorithms, SIAM Journal on Matrix Analysis and Applications, 30 (2008), 1067-1083. doi: 10.1137/070690730.

[9]

I. Domanov and L. DeLathauwer, Generic uniqueness of a structured matrix factorization and applications in blind source separation, IEEE Journal of Selected Topics in Signal Processing, 10 (2016), 701-711. doi: 10.1109/JSTSP.2016.2526971.

[10]

I. Domanov and L. De Lathauwer, Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL, SIAM Journal on Matrix Analysis and Applications, 36 (2015), 1567-1589. doi: 10.1137/140970276.

[11]

J. Draisma and J. Kuttler, Bounded-rank tensors are defined in bounded degree, Duke Mathematical Journal, 163 (2014), 35-63. doi: 10.1215/00127094-2405170.

[12]

J. D. Hauenstein and A. J. Sommese, Witness sets of projections, Applied Mathematics and Computation, Elsevier, 217 (2010), 3349-3354. doi: 10.1016/j.amc.2010.08.067.

[13]

J. D. Hauenstein and A. J. Sommese, Membership tests for images of algebraic sets by linear projections, Applied Mathematics and Computation, Elsevier, 219 (2013), 6809-6818. doi: 10.1016/j.amc.2012.12.060.

[14]

R. KeW. Li and M. Xiao, Characterization of extreme points of multi-stochastic tensors, Computational Methods in Applied Mathematics, 16 (2016), 459-474. doi: 10.1515/cmam-2016-0005.

[15]

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), 455-500. doi: 10.1137/07070111X.

[16]

J. M. Landsberg, Tensors: Geometry and Applications, AMS, Providence, Rhode Island, USA, 2012.

[17]

M. W. MahoneyL.-H. Lim and G. E. Carlsson, Algorithmic and statistical challenges in modern largescale data analysis are the focus of MMDS 2008, ACM SIGKDD Explorations Newsletter, 10 (2008), 57-60. doi: 10.1145/1540276.1540294.

[18]

F. Malgouyres and J. Landsberg, Stable recovery of the factors from a deep matrix product and application to convolutional network, preprint, arXiv: 1703. 08044.

[19]

Y. Matsushima (E. Kobayashi, translator), Differentiable Manifolds, Marcel Dekker, Inc. , North-Holland Publishing Co. , North Miami Beach, FL, U. S. A. , 1972.

[20]

E. E. PapalexakisC. Faloutsos and N. D. Sidiropoulos, Tensors for data mining and data fusion: Models, applications, and scalable algorithms, ACM Transactions on Intelligent Systems and Technology (TIST), 8 (2017), 1-44. doi: 10.1145/2915921.

[1]

H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50

[2]

Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems & Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601

[3]

Zhouchen Lin. A review on low-rank models in data analysis. Big Data & Information Analytics, 2016, 1 (2&3) : 139-161. doi: 10.3934/bdia.2016001

[4]

Gabriele Link, Jean-Claude Picaud. Ergodic geometry for non-elementary rank one manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6257-6284. doi: 10.3934/dcds.2016072

[5]

Felipe Hernandez. A decomposition for the Schrödinger equation with applications to bilinear and multilinear estimates. Communications on Pure & Applied Analysis, 2018, 17 (2) : 627-646. doi: 10.3934/cpaa.2018034

[6]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[7]

Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014

[8]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[9]

Mostafa Karimi, Noor Akma Ibrahim, Mohd Rizam Abu Bakar, Jayanthi Arasan. Rank-based inference for the accelerated failure time model in the presence of interval censored data. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 107-112. doi: 10.3934/naco.2017007

[10]

Nick Cercone, F'IEEE. What's the big deal about big data?. Big Data & Information Analytics, 2016, 1 (1) : 31-79. doi: 10.3934/bdia.2016.1.31

[11]

Roman VodiČka, Vladislav MantiČ. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1539-1561. doi: 10.3934/dcdss.2017079

[12]

Mariantonia Cotronei, Tomas Sauer. Full rank filters and polynomial reproduction. Communications on Pure & Applied Analysis, 2007, 6 (3) : 667-687. doi: 10.3934/cpaa.2007.6.667

[13]

Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239-247. doi: 10.3934/proc.2015.0239

[14]

Frank Blume. Minimal rates of entropy convergence for rank one systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 773-796. doi: 10.3934/dcds.2000.6.773

[15]

Michael Blank. Finite rank approximations of expanding maps with neutral singularities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 749-762. doi: 10.3934/dcds.2008.21.749

[16]

John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019

[17]

Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841

[18]

Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081

[19]

Pankaj Sharma, David Baglee, Jaime Campos, Erkki Jantunen. Big data collection and analysis for manufacturing organisations. Big Data & Information Analytics, 2017, 2 (2) : 127-139. doi: 10.3934/bdia.2017002

[20]

Enrico Capobianco. Born to be big: Data, graphs, and their entangled complexity. Big Data & Information Analytics, 2016, 1 (2&3) : 163-169. doi: 10.3934/bdia.2016002

 Impact Factor: 

Metrics

  • PDF downloads (13)
  • HTML views (211)
  • Cited by (0)

[Back to Top]