October 2016, 1(4): 277-278. doi: 10.3934/bdia.2016010

ADERSIM-IBM partnership in big data

1. 

Disaster & Emergency Management, York University, Toronto, Ontario, M3J 1P3, Canada

2. 

Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3, Canada

* Corresponding author:asgary@yorku.ca

Revised  November 2016 Published  December 2016

This short notes announces the recent development of the Advanced Disaster, Emergency and Rapid Response Simulation Initiative, in collaboration with IBM-Canada. Focus is on the Big Data analytics techniques and the IBM's Intelligent Operations Centre for Emergency Management platform.

Citation: Ali Asgary, Jianhong Wu. ADERSIM-IBM partnership in big data. Big Data & Information Analytics, 2016, 1 (4) : 277-278. doi: 10.3934/bdia.2016010
References:
[1]

N. Y. Armonk, As Hurricane Season Approaches, IBM and The Weather Company Collaborate on Emergency Management for Cities, New IBM Intelligent Operations Center for Emergency Management Uses Real-time Weather Data to Help Communities Predict and Prepare for Disasters, 2015. Available from: http://www-03.ibm.com/press/us/en/pressrelease/47160.wss.

[2]

J. HuangA. Asgary and J. Wu, Advanced disaster, emergency and rapid response simulation (ADERSIM), Big Data and Information Analytics, 1 (2016), v-v. doi: 10.3934/bdia.2016.1.1v.

[3]

A. Amaye, K. Neville, and A. Pope, BigPromises: using organisational mindfulness to integrate big data in emergency management decision making, Journal of Decision Systems, 25 (2016), ISS. SUPl.

[4]

Operational insight helps city leaders manage a safer, smarter city, Intelligent Operations Center for Smarter Cities, 2016. Available from: http://www-03.ibm.com/software/products/en/intelligent-operations-center.

show all references

References:
[1]

N. Y. Armonk, As Hurricane Season Approaches, IBM and The Weather Company Collaborate on Emergency Management for Cities, New IBM Intelligent Operations Center for Emergency Management Uses Real-time Weather Data to Help Communities Predict and Prepare for Disasters, 2015. Available from: http://www-03.ibm.com/press/us/en/pressrelease/47160.wss.

[2]

J. HuangA. Asgary and J. Wu, Advanced disaster, emergency and rapid response simulation (ADERSIM), Big Data and Information Analytics, 1 (2016), v-v. doi: 10.3934/bdia.2016.1.1v.

[3]

A. Amaye, K. Neville, and A. Pope, BigPromises: using organisational mindfulness to integrate big data in emergency management decision making, Journal of Decision Systems, 25 (2016), ISS. SUPl.

[4]

Operational insight helps city leaders manage a safer, smarter city, Intelligent Operations Center for Smarter Cities, 2016. Available from: http://www-03.ibm.com/software/products/en/intelligent-operations-center.

[1]

Jimmy Huang, Ali Asgary, Jianhong Wu. Advanced Disaster, Emergency and Rapid Response Simulation (ADERSIM). Big Data & Information Analytics, 2016, 1 (1) : v-v. doi: 10.3934/bdia.2016.1.1v

[2]

Sarah Ibri. An efficient distributed optimization and coordination protocol: Application to the emergency vehicle management. Journal of Industrial & Management Optimization, 2015, 11 (1) : 41-63. doi: 10.3934/jimo.2015.11.41

[3]

Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks & Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631

[4]

Nick Cercone, F'IEEE. What's the big deal about big data?. Big Data & Information Analytics, 2016, 1 (1) : 31-79. doi: 10.3934/bdia.2016.1.31

[5]

Pankaj Sharma, David Baglee, Jaime Campos, Erkki Jantunen. Big data collection and analysis for manufacturing organisations. Big Data & Information Analytics, 2017, 2 (2) : 127-139. doi: 10.3934/bdia.2017002

[6]

Enrico Capobianco. Born to be big: Data, graphs, and their entangled complexity. Big Data & Information Analytics, 2016, 1 (2&3) : 163-169. doi: 10.3934/bdia.2016002

[7]

Cristina Anton, Jian Deng, Yau Shu Wong, Yile Zhang, Weiping Zhang, Stephan Gabos, Dorothy Yu Huang, Can Jin. Modeling and simulation for toxicity assessment. Mathematical Biosciences & Engineering, 2017, 14 (3) : 581-606. doi: 10.3934/mbe.2017034

[8]

Alexandre Bayen, Rinaldo M. Colombo, Paola Goatin, Benedetto Piccoli. Traffic modeling and management: Trends and perspectives. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : i-ii. doi: 10.3934/dcdss.2014.7.3i

[9]

Alacia M. Voth, John G. Alford, Edward W. Swim. Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer. Mathematical Biosciences & Engineering, 2017, 14 (3) : 777-804. doi: 10.3934/mbe.2017043

[10]

Shuhua Zhang, Xinyu Wang, Hua Li. Modeling and computation of water management by real options. Journal of Industrial & Management Optimization, 2018, 14 (1) : 81-103. doi: 10.3934/jimo.2017038

[11]

Yaguang Huangfu, Guanqing Liang, Jiannong Cao. MatrixMap: Programming abstraction and implementation of matrix computation for big data analytics. Big Data & Information Analytics, 2016, 1 (4) : 349-376. doi: 10.3934/bdia.2016015

[12]

Weidong Bao, Wenhua Xiao, Haoran Ji, Chao Chen, Xiaomin Zhu, Jianhong Wu. Towards big data processing in clouds: An online cost-minimization approach. Big Data & Information Analytics, 2016, 1 (1) : 15-29. doi: 10.3934/bdia.2016.1.15

[13]

Yang Yu. Introduction: Special issue on computational intelligence methods for big data and information analytics. Big Data & Information Analytics, 2017, 2 (1) : i-ii. doi: 10.3934/bdia.201701i

[14]

Xiangmin Zhang. User perceived learning from interactive searching on big medical literature data. Big Data & Information Analytics, 2017, 2 (5) : 1-16. doi: 10.3934/bdia.2017019

[15]

Jinhae Park, Feng Chen, Jie Shen. Modeling and simulation of switchings in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1419-1440. doi: 10.3934/dcds.2010.26.1419

[16]

Xiaoli Yang, Jin Liang, Bei Hu. Minimization of carbon abatement cost: Modeling, analysis and simulation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2939-2969. doi: 10.3934/dcdsb.2017158

[17]

Michael Herty. Modeling, simulation and optimization of gas networks with compressors. Networks & Heterogeneous Media, 2007, 2 (1) : 81-97. doi: 10.3934/nhm.2007.2.81

[18]

Arni S.R. Srinivasa Rao. Modeling the rapid spread of avian influenza (H5N1) in India. Mathematical Biosciences & Engineering, 2008, 5 (3) : 523-537. doi: 10.3934/mbe.2008.5.523

[19]

Shuhua Zhang, Xinyu Wang, Song Wang. Modeling and computation of energy efficiency management with emission permits trading. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018010

[20]

Tieliang Gong, Qian Zhao, Deyu Meng, Zongben Xu. Why curriculum learning & self-paced learning work in big/noisy data: A theoretical perspective. Big Data & Information Analytics, 2016, 1 (1) : 111-127. doi: 10.3934/bdia.2016.1.111

 Impact Factor: 

Article outline

[Back to Top]