February 2019, 13(1): 171-183. doi: 10.3934/amc.2019011

Double circulant self-dual and LCD codes over Galois rings

1. 

School of Mathematical Sciences, Anhui University, Hefei 230601, China

2. 

CNRS/LAGA, University of Paris, 2 rue de la Liberté, 93 526 Saint-Denis, France

* Corresponding author: Minjia Shi

Received  June 2018 Published  December 2018

Fund Project: This paper is supported by National Natural Science Foundation of China (61672036), Excellent Youth Foundation of Natural Science Foundation of Anhui Province (1808085J20)

This paper investigates the existence, enumeration, and asymptotic performance of self-dual and LCD double circulant codes over Galois rings of characteristic $p^2$ and order $p^4$ with $p$ an odd prime. When $p \equiv 3 \ ({\rm mod} \ 4),$ we give a method to construct a duality preserving bijective Gray map from such a Galois ring to $\mathbb{Z}_{p^2}^2.$ Closed formed enumeration formulas for double circulant codes that are self-dual (resp. LCD) are derived as a function of the length of these codes. Using random coding, we obtain families of asymptotically good self-dual and LCD codes over $\mathbb{Z}_{p^2}$ with respect to the metric induced by the standard ${\mathbb{F}}_p$-valued Gray maps.

Citation: Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011
References:
[1]

A. AlahmadiF. Özdemir and P. Solé, On self-dual double circulant codes, Des. Codes Cryptogr., 86 (2018), 1257-1265. doi: 10.1007/s10623-017-0393-x.

[2]

C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. in Math. of Comm., 10 (2016), 131-150. doi: 10.3934/amc.2016.10.131.

[3]

S. T. DoughertyT. A. Gulliver and J. Wong, Self-Dual Codes over $ \mathbb{Z}_8$ and $ \mathbb{Z}_9$, Des. Codes Cryptogr., 41 (2006), 235-249. doi: 10.1007/s10623-006-9000-2.

[4]

S. T. DoughertyJ. L. KimB. ÖzkayaL. Sok and P. Solé, The combinatorics of LCD codes: linear programming bound and orthogonal matrices, Int. J. of Information and Coding Theory, 4 (2017), 116-128. doi: 10.1504/IJICOT.2017.083827.

[5]

M. Harada and A. Munemasa, On the classification of self-dual $ \mathbb{Z}_k$-codes, Lecture Notes in Comput. Sci., Springer, 5921 (2009), 78-90. doi: 10.1007/978-3-642-10868-6_6.

[6]

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.

[7]

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, (2nd ed.), Springer, 1990. doi: 10.1007/978-1-4757-2103-4.

[8]

J.-L. Kim and Y. Lee, Construction of MDS self-dual codes over Galois rings, Des. Codes Cryptogr., 45 (2007), 247-258. doi: 10.1007/s10623-007-9117-y.

[9]

S. Ling and T. Blackford, $ \mathbb{Z}_{p^{k+1}}$-linear codes, IEEE Trans. Inf. Theory, 48 (2002), 2592-2605. doi: 10.1109/TIT.2002.801473.

[10]

S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅱ: Chain rings, Des. Codes Cryptogr., 30 (2003), 113-130. doi: 10.1023/A:1024715527805.

[11]

Y. LiuM. ShiZ. Sepasdar and P. Solé, Construction of Hermitian Self-dual constacyclic codes over $ {\mathbb{F}}_{q^2}+u{\mathbb{F}}_{q^2}$, Appl. and Comput. Math., 15 (2016), 359-369.

[12]

J. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342. doi: 10.1016/0012-365X(92)90563-U.

[13]

P. Moree, On primes in arithmetic progression having a prescribed primitive root, Journal of Number Theory, 78 (1999), 85-98. doi: 10.1006/jnth.1999.2409.

[14]

M. Shi, A. Alahmadi and P. Solé, Codes and Rings: Theory and Practice, Academic Press, 2017.

[15]

Z. X. Wan, Finite Fields and Galois Rings, World Scientific, 2003.

show all references

References:
[1]

A. AlahmadiF. Özdemir and P. Solé, On self-dual double circulant codes, Des. Codes Cryptogr., 86 (2018), 1257-1265. doi: 10.1007/s10623-017-0393-x.

[2]

C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. in Math. of Comm., 10 (2016), 131-150. doi: 10.3934/amc.2016.10.131.

[3]

S. T. DoughertyT. A. Gulliver and J. Wong, Self-Dual Codes over $ \mathbb{Z}_8$ and $ \mathbb{Z}_9$, Des. Codes Cryptogr., 41 (2006), 235-249. doi: 10.1007/s10623-006-9000-2.

[4]

S. T. DoughertyJ. L. KimB. ÖzkayaL. Sok and P. Solé, The combinatorics of LCD codes: linear programming bound and orthogonal matrices, Int. J. of Information and Coding Theory, 4 (2017), 116-128. doi: 10.1504/IJICOT.2017.083827.

[5]

M. Harada and A. Munemasa, On the classification of self-dual $ \mathbb{Z}_k$-codes, Lecture Notes in Comput. Sci., Springer, 5921 (2009), 78-90. doi: 10.1007/978-3-642-10868-6_6.

[6]

W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.

[7]

K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, (2nd ed.), Springer, 1990. doi: 10.1007/978-1-4757-2103-4.

[8]

J.-L. Kim and Y. Lee, Construction of MDS self-dual codes over Galois rings, Des. Codes Cryptogr., 45 (2007), 247-258. doi: 10.1007/s10623-007-9117-y.

[9]

S. Ling and T. Blackford, $ \mathbb{Z}_{p^{k+1}}$-linear codes, IEEE Trans. Inf. Theory, 48 (2002), 2592-2605. doi: 10.1109/TIT.2002.801473.

[10]

S. Ling and P. Solé, On the algebraic structure of quasi-cyclic codes Ⅱ: Chain rings, Des. Codes Cryptogr., 30 (2003), 113-130. doi: 10.1023/A:1024715527805.

[11]

Y. LiuM. ShiZ. Sepasdar and P. Solé, Construction of Hermitian Self-dual constacyclic codes over $ {\mathbb{F}}_{q^2}+u{\mathbb{F}}_{q^2}$, Appl. and Comput. Math., 15 (2016), 359-369.

[12]

J. Massey, Linear codes with complementary duals, Discrete Math., 106/107 (1992), 337-342. doi: 10.1016/0012-365X(92)90563-U.

[13]

P. Moree, On primes in arithmetic progression having a prescribed primitive root, Journal of Number Theory, 78 (1999), 85-98. doi: 10.1006/jnth.1999.2409.

[14]

M. Shi, A. Alahmadi and P. Solé, Codes and Rings: Theory and Practice, Academic Press, 2017.

[15]

Z. X. Wan, Finite Fields and Galois Rings, World Scientific, 2003.

[1]

Suat Karadeniz, Bahattin Yildiz. Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$. Advances in Mathematics of Communications, 2012, 6 (2) : 193-202. doi: 10.3934/amc.2012.6.193

[2]

T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223

[3]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[4]

Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014

[5]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[6]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[7]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[8]

Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

[9]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[10]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[11]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[12]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[13]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[14]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[15]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[16]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[17]

T. Aaron Gulliver, Masaaki Harada. On the performance of optimal double circulant even codes. Advances in Mathematics of Communications, 2017, 11 (4) : 767-775. doi: 10.3934/amc.2017056

[18]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[19]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[20]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (65)
  • HTML views (181)
  • Cited by (0)

Other articles
by authors

[Back to Top]