November 2018, 12(4): 641-657. doi: 10.3934/amc.2018038

$ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes

1. 

College of Science, Civil Aviation University of China, Tianjin 300300, China

2. 

School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255091, China

3. 

Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China

* Corresponding author: Jian Gao

Received  April 2016 Published  September 2018

Fund Project: This research is supported by the National Natural Science Foundation of China (Grant Nos. 11701336, 11626144, 11671235, 61571243 and 61171082), the Scientific Research Foundation of Civil Aviation University of China (Grant No. 2017QD22X)

This paper is concerned with ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. These codes can be identified as submodules of the ring ${\mathbb{Z}}_{2}[x]/\langle x^r-1\rangle × {\mathbb{Z}}_{2}[x]/\langle x^s-1\rangle × {\mathbb{Z}}_{4}[x]/\langle x^t-1\rangle$. There are two major ingredients. First, we determine the generator polynomials and minimum generating sets of this kind of codes. Furthermore, we investigate their dual codes. We determine the structure of the dual of separable ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes completely. For the dual of non-separable ${{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes, we give their structural properties in a few special cases.

Citation: Tingting Wu, Jian Gao, Yun Gao, Fang-Wei Fu. $ {{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{2}}{{\mathbb{Z}}_{4}}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 641-657. doi: 10.3934/amc.2018038
References:
[1]

T. AbualrubI. Siap and N. Aydin, $ \mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514. doi: 10.1109/TIT.2014.2299791.

[2]

I. AydogduT. Abualrub and I. Siap, $ \mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814. doi: 10.1080/00207160.2013.859854.

[3]

I. Aydogdu and I. Siap, On $ \mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive codes, Linear and Multilinear Algebra, 63 (2015), 2089-2102. doi: 10.1080/03081087.2014.952728.

[4]

J. BorgesC. Fernández-CórdobaJ. Pujol and J. Rifà, $ \mathbb{Z}_2\mathbb{Z}_4$-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54 (2009), 167-179. doi: 10.1007/s10623-009-9316-9.

[5]

J. BorgesC. Fernández-Córdoba and R. Ten-Valls, $ \mathbb{Z}_2$-double cyclic codes, Des.Codes Cryptogr., 86 (2018), 463-479. doi: 10.1007/s10623-017-0334-8.

[6]

P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Reports Suppl., 10 (1973), vi+97 pp.

[7]

C. Fernández-CórdobaJ. Pujol and M. Villanueva, $ {\mathbb{Z}}_{2}{\mathbb{Z}}_{4}$-linear coes: Rank and kernel, Des. Codes Cryptogr., 56 (2010), 43-59. doi: 10.1007/s10623-009-9340-9.

[8]

J. GaoM. ShiT. Wu and F.-W. Fu, On double cyclic codes over $ \mathbb{Z}_4$, Finite Fields Appl., 39 (2016), 233-250. doi: 10.1016/j.ffa.2016.02.003.

[9]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.

[10]

H. Mostafanasab, Triple cyclic codes over $ \mathbb{Z}_2$, Palest. J. Math., 6 (2017), Special Issue Ⅱ, 123–134, arXiv: 1509.05351.

[11]

M. ShiP. Solé and B. Wu, Cyclic codes and the weight enumerators of linear codes over $ \mathbb{F}_2 + v\mathbb{F}_2 + v^2\mathbb{F}_2$, Applied and Computational Mathematics, 12 (2013), 247-255.

[12]

M. Shi and Y. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields Appl., 39 (2016), 159-178. doi: 10.1016/j.ffa.2016.01.010.

[13]

M. ShiL. QianS. LinN. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95. doi: 10.1016/j.ffa.2016.11.016.

[14]

Z.-X. Wan, Quaternary Codes, World Scientific, Singapore, 1997. doi: 10.1142/3603.

show all references

References:
[1]

T. AbualrubI. Siap and N. Aydin, $ \mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514. doi: 10.1109/TIT.2014.2299791.

[2]

I. AydogduT. Abualrub and I. Siap, $ \mathbb{Z}_2\mathbb{Z}_2[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814. doi: 10.1080/00207160.2013.859854.

[3]

I. Aydogdu and I. Siap, On $ \mathbb{Z}_{p^r}\mathbb{Z}_{p^s}$-additive codes, Linear and Multilinear Algebra, 63 (2015), 2089-2102. doi: 10.1080/03081087.2014.952728.

[4]

J. BorgesC. Fernández-CórdobaJ. Pujol and J. Rifà, $ \mathbb{Z}_2\mathbb{Z}_4$-linear codes: Geneartor matrices and duality, Des. Codes Cryptogr., 54 (2009), 167-179. doi: 10.1007/s10623-009-9316-9.

[5]

J. BorgesC. Fernández-Córdoba and R. Ten-Valls, $ \mathbb{Z}_2$-double cyclic codes, Des.Codes Cryptogr., 86 (2018), 463-479. doi: 10.1007/s10623-017-0334-8.

[6]

P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Reports Suppl., 10 (1973), vi+97 pp.

[7]

C. Fernández-CórdobaJ. Pujol and M. Villanueva, $ {\mathbb{Z}}_{2}{\mathbb{Z}}_{4}$-linear coes: Rank and kernel, Des. Codes Cryptogr., 56 (2010), 43-59. doi: 10.1007/s10623-009-9340-9.

[8]

J. GaoM. ShiT. Wu and F.-W. Fu, On double cyclic codes over $ \mathbb{Z}_4$, Finite Fields Appl., 39 (2016), 233-250. doi: 10.1016/j.ffa.2016.02.003.

[9]

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, 2003. doi: 10.1017/CBO9780511807077.

[10]

H. Mostafanasab, Triple cyclic codes over $ \mathbb{Z}_2$, Palest. J. Math., 6 (2017), Special Issue Ⅱ, 123–134, arXiv: 1509.05351.

[11]

M. ShiP. Solé and B. Wu, Cyclic codes and the weight enumerators of linear codes over $ \mathbb{F}_2 + v\mathbb{F}_2 + v^2\mathbb{F}_2$, Applied and Computational Mathematics, 12 (2013), 247-255.

[12]

M. Shi and Y. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields Appl., 39 (2016), 159-178. doi: 10.1016/j.ffa.2016.01.010.

[13]

M. ShiL. QianS. LinN. Aydin and P. Solé, On constacyclic codes over $ \mathbb{Z}_4[u]/\langle u^2-1 \rangle$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95. doi: 10.1016/j.ffa.2016.11.016.

[14]

Z.-X. Wan, Quaternary Codes, World Scientific, Singapore, 1997. doi: 10.1142/3603.

[1]

Joaquim Borges, Cristina Fernández-Córdoba, Roger Ten-Valls. On ${{\mathbb{Z}}}_{p^r}{{\mathbb{Z}}}_{p^s}$-additive cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 169-179. doi: 10.3934/amc.2018011

[2]

Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425

[3]

Joaquim Borges, Steven T. Dougherty, Cristina Fernández-Córdoba. Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$. Advances in Mathematics of Communications, 2012, 6 (3) : 287-303. doi: 10.3934/amc.2012.6.287

[4]

Makoto Araya, Masaaki Harada, Hiroki Ito, Ken Saito. On the classification of $\mathbb{Z}_4$-codes. Advances in Mathematics of Communications, 2017, 11 (4) : 747-756. doi: 10.3934/amc.2017054

[5]

Amit Sharma, Maheshanand Bhaintwal. A class of skew-cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$ with derivation. Advances in Mathematics of Communications, 2018, 12 (4) : 723-739. doi: 10.3934/amc.2018043

[6]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[7]

Thomas Feulner. Canonization of linear codes over $\mathbb Z$4. Advances in Mathematics of Communications, 2011, 5 (2) : 245-266. doi: 10.3934/amc.2011.5.245

[8]

Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes. Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571

[9]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[10]

Jean Bourgain. On random Schrödinger operators on $\mathbb Z^2$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 1-15. doi: 10.3934/dcds.2002.8.1

[11]

Imed Bachar, Habib Mâagli. Singular solutions of a nonlinear equation in a punctured domain of $\mathbb{R}^{2}$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 171-188. doi: 10.3934/dcdss.2019012

[12]

Vladimir Chepyzhov, Alexei Ilyin, Sergey Zelik. Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1835-1855. doi: 10.3934/dcdsb.2017109

[13]

Karim Samei, Arezoo Soufi. Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$. Advances in Mathematics of Communications, 2017, 11 (4) : 791-804. doi: 10.3934/amc.2017058

[14]

Jonathan Meddaugh, Brian E. Raines. The structure of limit sets for $\mathbb{Z}^d$ actions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4765-4780. doi: 10.3934/dcds.2014.34.4765

[15]

Valeria Banica, Luis Vega. Singularity formation for the 1-D cubic NLS and the Schrödinger map on $\mathbb S^2$. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1317-1329. doi: 10.3934/cpaa.2018064

[16]

James Tanis. Exponential multiple mixing for some partially hyperbolic flows on products of $ {\rm{PSL}}(2, \mathbb{R})$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 989-1006. doi: 10.3934/dcds.2018042

[17]

Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016

[18]

Teresa Alberico, Costantino Capozzoli, Luigi D'Onofrio, Roberta Schiattarella. $G$-convergence for non-divergence elliptic operators with VMO coefficients in $\mathbb R^3$. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 129-137. doi: 10.3934/dcdss.2019009

[19]

Dongchen Li, Dmitry V. Turaev. Existence of heterodimensional cycles near Shilnikov loops in systems with a $\mathbb{Z}_2$ symmetry. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4399-4437. doi: 10.3934/dcds.2017189

[20]

Michael Kiermaier, Matthias Koch, Sascha Kurz. $2$-arcs of maximal size in the affine and the projective Hjelmslev plane over $\mathbb Z$25. Advances in Mathematics of Communications, 2011, 5 (2) : 287-301. doi: 10.3934/amc.2011.5.287

2017 Impact Factor: 0.564

Article outline

[Back to Top]