August 2018, 12(3): 579-594. doi: 10.3934/amc.2018034

Parameters of LCD BCH codes with two lengths

1. 

School of Mathematics, Southwest Jiaotong University, Chengdu 610031, China

2. 

Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

3. 

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China

4. 

School of Mathematical Sciences, Qufu Normal University, Shandong 273165, China

* Corresponding author: Chengju Li

Received  August 2017 Revised  March 2018 Published  July 2018

Fund Project: The work was supported by the National Natural Science Foundation of China (NSFC) under Grant 11701179, the Shanghai Sailing Program under Grant 17YF1404300, the Foundation of Science and Technology on Information Assurance Laboratory under Grant KJ-17-007, the National NSFC under Grant 11701317, the Shanghai Natural Science Foundation under Grant 17ZR1408400, and the National Key R&D Program of China under Grant 2017YFB0802302

In this paper, we study LCD BCH codes over the finite field GF$(q)$ with two types of lengths $n$, where $n = q^l+1$ and $n = (q^l+1)/(q+1)$. Several classes of LCD BCH codes are given and their parameters are determined or bounded by exploring the cyclotomic cosets modulo $n$. For $n = q^l+1$, we determine the dimensions of the codes with designed distance $δ$, where $q^{\lfloor\frac{l+1}{2}\rfloor}+1 ≤ δ ≤q ^{\lfloor\frac{l+3}{2}\rfloor}+1$. For $n = (q^l+1)/(q+1)$, the dimensions of the codes with designed distance $δ$ are presented, where $2 ≤ δ ≤q ^\frac{l-1}{2}+1$.

Citation: Haode Yan, Hao Liu, Chengju Li, Shudi Yang. Parameters of LCD BCH codes with two lengths. Advances in Mathematics of Communications, 2018, 12 (3) : 579-594. doi: 10.3934/amc.2018034
References:
[1]

S. A. AlyA. Klappenecker and P. K. Sarvepalli, On quantum and classical BCH codes, IEEE Trans. Inf. Theory, 53 (2007), 1183-1188. doi: 10.1109/TIT.2006.890730.

[2]

K. Boonniyoma and S. Jitman, Complementary dual subfield linear codes over finite fields, preprint, arXiv: 1605.06827.

[3]

C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, in Coding Theory and Applications (eds. R. Pinto, P. R. Malonek and P. Vettori), CIM Series in Mathematical Sciences, Springer Verlag, 3 (2014), 97-105.

[4]

C. CarletS. MesnagerC. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., (2018), 1-14. doi: 10.1007/s10623-018-0463-8.

[5]

C. CarletS. MesnagerC. TangY. Qi and R. Pellikaan, Linear codes over $\Bbb F_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inf. Theory, 64 (2018), 3010-3017. doi: 10.1109/TIT.2018.2789347.

[6]

P. Charpin, Open problems on cyclic codes, in Handbook of Coding Theory (eds. V. S. Pless and W. C. Huffman), Amsterdam, The Netherlands: Elsevier, 1 (1998), 963-1063.

[7]

B. Chen and H. Liu, New constructions of MDS codes with complementary duals, IEEE Trans. Inf. Theory, 63 (2017), 2843-2847. doi: 10.1109/TIT.2017.2748955.

[8]

C. Ding, Parameters of several classes of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 5322-5330. doi: 10.1109/TIT.2015.2470251.

[9]

C. DingX. Du and Z. Zhou, The Bose and minimum distance of a class of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 2351-2356. doi: 10.1109/TIT.2015.2409838.

[10]

C. DingC. Fan and Z. Zhou, The dimension and minimum distance of two classes of primitive BCH codes, Finite Fields Appl., 45 (2017), 237-263. doi: 10.1016/j.ffa.2016.12.009.

[11]

L. Jin, Construction of MDS codes with complementary duals, IEEE Trans. Inf. Theory, 63 (2017), 2843-2847.

[12]

C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., (2017), 1-18. doi: 10.1007/s10623-017-0447-0.

[13]

C. LiC. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inf. Theory, 63 (2017), 4344-4356. doi: 10.1109/TIT.2017.2672961.

[14]

S. LiC. DingM. Xiong and G. Ge, Narrow-sense BCH codes over ${\rm{GF}}(q)$ with length $n = (q^m-1)/(q-1)$, IEEE Trans. Inf. Theory, 63 (2017), 7219-7236. doi: 10.1109/TIT.2017.2743687.

[15]

S. LiC. LiC. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inf. Theory, 63 (2017), 5699-5717.

[16]

H. LiuC. Ding and C. Li, Dimensions of three types of BCH codes over GF($q$), Discrete Math., 340 (2017), 1910-1927. doi: 10.1016/j.disc.2017.04.001.

[17]

H. B. Mann, On the number of information symbols in Bose-Chaudhuri Codes, Inf. Control, 5 (1962), 153-162. doi: 10.1016/S0019-9958(62)90298-X.

[18]

J. L. Massey, Reversible codes, Information and Control, 7 (1964), 369-380. doi: 10.1016/S0019-9958(64)90438-3.

[19]

X. Yang and J. L. Massey, The necessary and sufficient condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393. doi: 10.1016/0012-365X(94)90283-6.

[20]

D. Yue and Z. Hu, On the dimension and minimum distance of BCH codes over ${\rm{GF}}(q)$, J. Electronics (China), 13 (1996), 216-221.

[21]

S. Zhu, B. Pang and Z. Sun, The reversible negacyclic codes over finite fields, preprint, arXiv: 1610.08206.

show all references

References:
[1]

S. A. AlyA. Klappenecker and P. K. Sarvepalli, On quantum and classical BCH codes, IEEE Trans. Inf. Theory, 53 (2007), 1183-1188. doi: 10.1109/TIT.2006.890730.

[2]

K. Boonniyoma and S. Jitman, Complementary dual subfield linear codes over finite fields, preprint, arXiv: 1605.06827.

[3]

C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, in Coding Theory and Applications (eds. R. Pinto, P. R. Malonek and P. Vettori), CIM Series in Mathematical Sciences, Springer Verlag, 3 (2014), 97-105.

[4]

C. CarletS. MesnagerC. Tang and Y. Qi, Euclidean and Hermitian LCD MDS codes, Des. Codes Cryptogr., (2018), 1-14. doi: 10.1007/s10623-018-0463-8.

[5]

C. CarletS. MesnagerC. TangY. Qi and R. Pellikaan, Linear codes over $\Bbb F_q$ are equivalent to LCD codes for $q>3$, IEEE Trans. Inf. Theory, 64 (2018), 3010-3017. doi: 10.1109/TIT.2018.2789347.

[6]

P. Charpin, Open problems on cyclic codes, in Handbook of Coding Theory (eds. V. S. Pless and W. C. Huffman), Amsterdam, The Netherlands: Elsevier, 1 (1998), 963-1063.

[7]

B. Chen and H. Liu, New constructions of MDS codes with complementary duals, IEEE Trans. Inf. Theory, 63 (2017), 2843-2847. doi: 10.1109/TIT.2017.2748955.

[8]

C. Ding, Parameters of several classes of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 5322-5330. doi: 10.1109/TIT.2015.2470251.

[9]

C. DingX. Du and Z. Zhou, The Bose and minimum distance of a class of BCH codes, IEEE Trans. Inf. Theory, 61 (2015), 2351-2356. doi: 10.1109/TIT.2015.2409838.

[10]

C. DingC. Fan and Z. Zhou, The dimension and minimum distance of two classes of primitive BCH codes, Finite Fields Appl., 45 (2017), 237-263. doi: 10.1016/j.ffa.2016.12.009.

[11]

L. Jin, Construction of MDS codes with complementary duals, IEEE Trans. Inf. Theory, 63 (2017), 2843-2847.

[12]

C. Li, Hermitian LCD codes from cyclic codes, Des. Codes Cryptogr., (2017), 1-18. doi: 10.1007/s10623-017-0447-0.

[13]

C. LiC. Ding and S. Li, LCD cyclic codes over finite fields, IEEE Trans. Inf. Theory, 63 (2017), 4344-4356. doi: 10.1109/TIT.2017.2672961.

[14]

S. LiC. DingM. Xiong and G. Ge, Narrow-sense BCH codes over ${\rm{GF}}(q)$ with length $n = (q^m-1)/(q-1)$, IEEE Trans. Inf. Theory, 63 (2017), 7219-7236. doi: 10.1109/TIT.2017.2743687.

[15]

S. LiC. LiC. Ding and H. Liu, Two families of LCD BCH codes, IEEE Trans. Inf. Theory, 63 (2017), 5699-5717.

[16]

H. LiuC. Ding and C. Li, Dimensions of three types of BCH codes over GF($q$), Discrete Math., 340 (2017), 1910-1927. doi: 10.1016/j.disc.2017.04.001.

[17]

H. B. Mann, On the number of information symbols in Bose-Chaudhuri Codes, Inf. Control, 5 (1962), 153-162. doi: 10.1016/S0019-9958(62)90298-X.

[18]

J. L. Massey, Reversible codes, Information and Control, 7 (1964), 369-380. doi: 10.1016/S0019-9958(64)90438-3.

[19]

X. Yang and J. L. Massey, The necessary and sufficient condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391-393. doi: 10.1016/0012-365X(94)90283-6.

[20]

D. Yue and Z. Hu, On the dimension and minimum distance of BCH codes over ${\rm{GF}}(q)$, J. Electronics (China), 13 (1996), 216-221.

[21]

S. Zhu, B. Pang and Z. Sun, The reversible negacyclic codes over finite fields, preprint, arXiv: 1610.08206.

[1]

José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018

[2]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[3]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[4]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[5]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69

[6]

Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41

[7]

Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001

[8]

Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163

[9]

Fernando Hernando, Tom Høholdt, Diego Ruano. List decoding of matrix-product codes from nested codes: An application to quasi-cyclic codes. Advances in Mathematics of Communications, 2012, 6 (3) : 259-272. doi: 10.3934/amc.2012.6.259

[10]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[11]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[12]

Liqin Hu, Qin Yue, Fengmei Liu. Linear complexity of cyclotomic sequences of order six and BCH codes over GF(3). Advances in Mathematics of Communications, 2014, 8 (3) : 297-312. doi: 10.3934/amc.2014.8.297

[13]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[14]

Rafael Arce-Nazario, Francis N. Castro, Jose Ortiz-Ubarri. On the covering radius of some binary cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 329-338. doi: 10.3934/amc.2017025

[15]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[16]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[17]

Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83

[18]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[19]

Jean Creignou, Hervé Diet. Linear programming bounds for unitary codes. Advances in Mathematics of Communications, 2010, 4 (3) : 323-344. doi: 10.3934/amc.2010.4.323

[20]

Fernando Hernando, Diego Ruano. New linear codes from matrix-product codes with polynomial units. Advances in Mathematics of Communications, 2010, 4 (3) : 363-367. doi: 10.3934/amc.2010.4.363

2017 Impact Factor: 0.564

Article outline

[Back to Top]