August 2018, 12(3): 451-463. doi: 10.3934/amc.2018027

The average dimension of the Hermitian hull of constayclic codes over finite fields of square order

1. 

Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand

2. 

Department of Mathematics and Statistics, Faculty of Science, Thaksin University, Phattalung 93110, Thailand

Received  February 2017 Published  July 2018

The hulls of linear and cyclic codes have been extensively studied due to their wide applications. The dimensions and average dimension of the Euclidean hull of linear and cyclic codes have been well-studied. In this paper, the average dimension of the Hermitian hull of constacyclic codes of length $n$ over a finite field $\mathbb{F}_{q^2}$ is determined together with some upper and lower bounds. It turns out that either the average dimension of the Hermitian hull of constacyclic codes of length $n$ over $\mathbb{F}_{q^2}$ is zero or it grows the same rate as $n$. Comparison to the average dimension of the Euclidean hull of cyclic codes is discussed as well.

Citation: Somphong Jitman, Ekkasit Sangwisut. The average dimension of the Hermitian hull of constayclic codes over finite fields of square order. Advances in Mathematics of Communications, 2018, 12 (3) : 451-463. doi: 10.3934/amc.2018027
References:
[1]

E. F. Assmus Jr and J. D. Key, Affine and projective planes, Discrete Math., 83 (1990), 161-187. doi: 10.1016/0012-365X(90)90003-Z.

[2]

G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377. doi: 10.1016/j.ffa.2011.09.005.

[3]

B. ChenY. FanL. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231. doi: 10.1016/j.ffa.2012.10.001.

[4]

K. GuendaS. Jitman and T. A. Gulliver, Constructions of good entanglement-assisted quantum error correcting codes, Des. Codes Cryptogr., 86 (2018), 121-136. doi: 10.1007/s10623-017-0330-z.

[5]

S. Jitman, Good integers and some applications in coding theory, Cryptogr. Commun., 10 (2018), 685-704. doi: 10.1007/s12095-017-0255-4.

[6]

S. Jitman and E. Sangwisut, The average dimension of the Hermitian hull of cyclic codes over finite fields of square order, in: AIP Proceedings of ICoMEIA 2016, 1775 (2016), Article ID 030026.

[7]

J. Leon, Computing automorphism groups of error-correcting codes, IEEE Trans. Inform. Theory, 28 (1982), 496-511. doi: 10.1109/TIT.1982.1056498.

[8]

J. Leon, Permutation group algorithms based on partition, Ⅰ: Theory and algorithms, J. Symbolic Comput., 12 (1991), 533-583. doi: 10.1016/S0747-7171(08)80103-4.

[9]

E. SangwisutS. JitmanS. Ling and P. Udomkavanich, Hulls of cyclic and negacyclic codes over finite fields, Finite Fields Appl., 33 (2015), 232-257. doi: 10.1016/j.ffa.2014.12.008.

[10]

E. SangwisutS. Jitman and P. Udomkavanich, Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields, Adv. Math. Commun., 11 (2017), 595-613. doi: 10.3934/amc.2017045.

[11]

N. Sendrier, On the dimension of the hull, SIAM J. Appl. Math., 10 (1997), 282-293. doi: 10.1137/S0895480195294027.

[12]

N. Sendrier and G. Skersys, On the computation of the automorphism group of a linear code, in: Proceedings of IEEE ISIT'2001, Washington, DC, 6 (2001), 10pp.

[13]

N. Sendrier, Finding the permutation between equivalent binary code, in: Proceedings of IEEE ISIT'1997, Ulm, Germany, (1997), p367. doi: 10.1109/ISIT.1997.613303.

[14]

N. Sendrier, Finding the permutation between equivalent codes: The support splitting algorithm, IEEE Trans. Inform. Theory, 46 (2000), 1193-1203. doi: 10.1109/18.850662.

[15]

G. Skersys, The average dimension of the hull of cyclic codes, Discrete Appl. Math, 128 (2003), 275-292. doi: 10.1016/S0166-218X(02)00451-1.

[16]

Y. Yang and W. Cai, On self-dual constacyclic codes over finite fields, Des. Codes Cryptogr., 74 (2015), 355-364. doi: 10.1007/s10623-013-9865-9.

show all references

References:
[1]

E. F. Assmus Jr and J. D. Key, Affine and projective planes, Discrete Math., 83 (1990), 161-187. doi: 10.1016/0012-365X(90)90003-Z.

[2]

G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377. doi: 10.1016/j.ffa.2011.09.005.

[3]

B. ChenY. FanL. Lin and H. Liu, Constacyclic codes over finite fields, Finite Fields Appl., 18 (2012), 1217-1231. doi: 10.1016/j.ffa.2012.10.001.

[4]

K. GuendaS. Jitman and T. A. Gulliver, Constructions of good entanglement-assisted quantum error correcting codes, Des. Codes Cryptogr., 86 (2018), 121-136. doi: 10.1007/s10623-017-0330-z.

[5]

S. Jitman, Good integers and some applications in coding theory, Cryptogr. Commun., 10 (2018), 685-704. doi: 10.1007/s12095-017-0255-4.

[6]

S. Jitman and E. Sangwisut, The average dimension of the Hermitian hull of cyclic codes over finite fields of square order, in: AIP Proceedings of ICoMEIA 2016, 1775 (2016), Article ID 030026.

[7]

J. Leon, Computing automorphism groups of error-correcting codes, IEEE Trans. Inform. Theory, 28 (1982), 496-511. doi: 10.1109/TIT.1982.1056498.

[8]

J. Leon, Permutation group algorithms based on partition, Ⅰ: Theory and algorithms, J. Symbolic Comput., 12 (1991), 533-583. doi: 10.1016/S0747-7171(08)80103-4.

[9]

E. SangwisutS. JitmanS. Ling and P. Udomkavanich, Hulls of cyclic and negacyclic codes over finite fields, Finite Fields Appl., 33 (2015), 232-257. doi: 10.1016/j.ffa.2014.12.008.

[10]

E. SangwisutS. Jitman and P. Udomkavanich, Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields, Adv. Math. Commun., 11 (2017), 595-613. doi: 10.3934/amc.2017045.

[11]

N. Sendrier, On the dimension of the hull, SIAM J. Appl. Math., 10 (1997), 282-293. doi: 10.1137/S0895480195294027.

[12]

N. Sendrier and G. Skersys, On the computation of the automorphism group of a linear code, in: Proceedings of IEEE ISIT'2001, Washington, DC, 6 (2001), 10pp.

[13]

N. Sendrier, Finding the permutation between equivalent binary code, in: Proceedings of IEEE ISIT'1997, Ulm, Germany, (1997), p367. doi: 10.1109/ISIT.1997.613303.

[14]

N. Sendrier, Finding the permutation between equivalent codes: The support splitting algorithm, IEEE Trans. Inform. Theory, 46 (2000), 1193-1203. doi: 10.1109/18.850662.

[15]

G. Skersys, The average dimension of the hull of cyclic codes, Discrete Appl. Math, 128 (2003), 275-292. doi: 10.1016/S0166-218X(02)00451-1.

[16]

Y. Yang and W. Cai, On self-dual constacyclic codes over finite fields, Des. Codes Cryptogr., 74 (2015), 355-364. doi: 10.1007/s10623-013-9865-9.

Table 1.  The lower and upper bounds for $E_H(n = \overline{n}p^\nu, \lambda, q^2)$
Order of $\lambda$ Conditions LB UB Remarks
$r$ is odd and $r|(q+1).$ $ r\in M_q$ and $ n\in M_q$ $0$ $0$ Remark 2
$r\in M_q$ and $ n\not\in M_q$ $\cfrac{n}{8}$ $\cfrac{n}{3}$ Theorem 5.1
$r\not\in M_q$ $\cfrac{n}{4}$ $\cfrac{n}{3}$
$r$ is even and $r|(q+1).$ $\beta \left( {\bar{n}} \right)+\beta \left( r \right)\leq\gamma $, $r\in M_q$ and $n\in M_q$ $0$ $0$ Theorem 5.1
$\beta \left( {\bar{n}} \right)+\beta \left( r \right)\leq\gamma $, $r\in M_q$ and $n\not\in M_q$ $\dfrac{n}{6}$ $\dfrac{n}{3}$
$\beta \left( {\bar{n}} \right)+\beta \left( r \right)>\gamma $ or $r\not\in M_q$ $\dfrac{n}{4}$ $\dfrac{n}{3}$
Order of $\lambda$ Conditions LB UB Remarks
$r$ is odd and $r|(q+1).$ $ r\in M_q$ and $ n\in M_q$ $0$ $0$ Remark 2
$r\in M_q$ and $ n\not\in M_q$ $\cfrac{n}{8}$ $\cfrac{n}{3}$ Theorem 5.1
$r\not\in M_q$ $\cfrac{n}{4}$ $\cfrac{n}{3}$
$r$ is even and $r|(q+1).$ $\beta \left( {\bar{n}} \right)+\beta \left( r \right)\leq\gamma $, $r\in M_q$ and $n\in M_q$ $0$ $0$ Theorem 5.1
$\beta \left( {\bar{n}} \right)+\beta \left( r \right)\leq\gamma $, $r\in M_q$ and $n\not\in M_q$ $\dfrac{n}{6}$ $\dfrac{n}{3}$
$\beta \left( {\bar{n}} \right)+\beta \left( r \right)>\gamma $ or $r\not\in M_q$ $\dfrac{n}{4}$ $\dfrac{n}{3}$
[1]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

[2]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[3]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[4]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[5]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[6]

Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008

[7]

Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

[8]

Hai Q. Dinh, Hien D. T. Nguyen. On some classes of constacyclic codes over polynomial residue rings. Advances in Mathematics of Communications, 2012, 6 (2) : 175-191. doi: 10.3934/amc.2012.6.175

[9]

Nuh Aydin, Nicholas Connolly, Markus Grassl. Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes. Advances in Mathematics of Communications, 2017, 11 (1) : 245-258. doi: 10.3934/amc.2017016

[10]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[11]

Anna-Lena Trautmann. Isometry and automorphisms of constant dimension codes. Advances in Mathematics of Communications, 2013, 7 (2) : 147-160. doi: 10.3934/amc.2013.7.147

[12]

Natalia Silberstein, Tuvi Etzion. Large constant dimension codes and lexicodes. Advances in Mathematics of Communications, 2011, 5 (2) : 177-189. doi: 10.3934/amc.2011.5.177

[13]

Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055

[14]

Tatsuya Maruta, Yusuke Oya. On optimal ternary linear codes of dimension 6. Advances in Mathematics of Communications, 2011, 5 (3) : 505-520. doi: 10.3934/amc.2011.5.505

[15]

Thomas Honold, Michael Kiermaier, Sascha Kurz. Constructions and bounds for mixed-dimension subspace codes. Advances in Mathematics of Communications, 2016, 10 (3) : 649-682. doi: 10.3934/amc.2016033

[16]

Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046

[17]

Daniele Bartoli, Matteo Bonini, Massimo Giulietti. Constant dimension codes from Riemann-Roch spaces. Advances in Mathematics of Communications, 2017, 11 (4) : 705-713. doi: 10.3934/amc.2017051

[18]

Tsonka Baicheva, Iliya Bouyukliev. On the least covering radius of binary linear codes of dimension 6. Advances in Mathematics of Communications, 2010, 4 (3) : 399-404. doi: 10.3934/amc.2010.4.399

[19]

Yonglin Cao, Yuan Cao, Hai Q. Dinh, Fang-Wei Fu, Jian Gao, Songsak Sriboonchitta. Constacyclic codes of length $np^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$. Advances in Mathematics of Communications, 2018, 12 (2) : 231-262. doi: 10.3934/amc.2018016

[20]

Ian Blake, V. Kumar Murty, Hamid Usefi. A note on diagonal and Hermitian hypersurfaces. Advances in Mathematics of Communications, 2016, 10 (4) : 753-764. doi: 10.3934/amc.2016039

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (70)
  • HTML views (97)
  • Cited by (0)

Other articles
by authors

[Back to Top]