May 2018, 12(2): 387-413. doi: 10.3934/amc.2018024

New families of strictly optimal frequency hopping sequence sets

Department of Mathematics, Ningbo University, Ningbo 315211, China

Received  June 2017 Revised  November 2017 Published  March 2018

Fund Project: The first author is supported by the NSFC under Grants 11701303, and K.C.Wong Magna Fund in Ningbo University

Frequency hopping sequences (FHSs) with favorable partial Hamming correlation properties have important applications in many synchronization and multiple-access systems. In this paper, we investigate constructions of FHS sets with optimal partial Hamming correlation. We present several direct constructions for balanced nested cyclic difference packings (BNCDPs) and balanced nested cyclic relative difference packings (BNCRDPs) by using trace functions and discrete logarithm. We also show three recursive constructions for FHS sets with partial Hamming correlation, which are based on cyclic difference matrices and discrete logarithm. Combing these BNCDPs, BNCRDPs and three recursive constructions, we obtain infinitely many new strictly optimal FHS sets with respect to the Peng-Fan bounds.

Citation: Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024
References:
[1]

J. Bao and L. Ji, Frequency hopping sequences with optimal partial hamming correlation, IEEE Trans. Inf. Theory, 62 (2016), 3768-3783. doi: 10.1109/TIT.2016.2551225.

[2]

J. Bao and L. Ji, New families of optimal frequency hopping sequence sets, IEEE Trans. Inf. Theory, 62 (2016), 5209-5224. doi: 10.1109/TIT.2016.2589258.

[3]

Bluetooth Special Interest Group (SIG), Washington, DC, USA. (2003, Nov.). Specification of the Bluetooth Systems-Core [Online]. Available: http://www.bluetooth.org

[4]

H. CaiZ. ZhouY. Yang and X. Tang, A new construction of frequency hopping sequences with optimal partial Hamming correlation, IEEE Trans. Inf. Theory, 60 (2014), 5782-5790. doi: 10.1109/TIT.2014.2332996.

[5]

H. CaiY. YangZ. Zhou and X. Tang, Strictly optimal frequency-hopping sequence sets with optimal family sizes, IEEE Trans. Inf. Theory, 62 (2016), 1087-1093. doi: 10.1109/TIT.2015.2512859.

[6]

B. ChenL. LinS. Ling and H. Liu, Three new classes of optimal frequency-hopping sequence sets, Des. Codes Cryptogr., 83 (2017), 219-232. doi: 10.1007/s10623-016-0220-9.

[7]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141. doi: 10.1109/TIT.2004.842708.

[8]

J.-H. ChungG. Gong and K. Yang, New families of optimal frequency-hopping sequences by composite lengths, IEEE Trans. Inf. Theory, 60 (2014), 3688-3697. doi: 10.1109/TIT.2014.2315207.

[9]

J.-H. ChungY. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inf. Theory, 55 (2009), 5783-5791. doi: 10.1109/TIT.2009.2032742.

[10]

J.-H. Chung and K. Yang, $k$ -fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 2306-2317. doi: 10.1109/TIT.2011.2112235.

[11]

J.-H. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inf. Theory, 56 (2010), 1685-1693. doi: 10.1109/TIT.2010.2040888.

[12]

C. J. Colbourn, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 2010. doi: 10. 1201/9781420049954.

[13]

C. DingR. Fuji-HaraY. FujiwaraM. Jimbo and M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009), 3297-3304. doi: 10.1109/TIT.2009.2021366.

[14]

C. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 53 (2007), 2606-2610. doi: 10.1109/TIT.2007.899545.

[15]

C. DingY. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010), 3605-3612. doi: 10.1109/TIT.2010.2048504.

[16]

C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 54 (2008), 3741-3745. doi: 10.1109/TIT.2008.926410.

[17]

Y.-C. EunS.-Y. JinY.-P. Hong and H.-Y. Song, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inf. Theory, 50 (2004), 2438-2442. doi: 10.1109/TIT.2004.834792.

[18]

C. FanH. Cai and X. Tang, A combinatorial construction for strictly optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 62 (2016), 4769-4774. doi: 10.1109/TIT.2016.2556710.

[19]

P. Fan and M. Darnell, Sequence Design for Communications Applications, London, U. K. : Wiley, 1996.

[20]

R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004), 2408-2420. doi: 10.1109/TIT.2004.834783.

[21]

G. GeR. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718. doi: 10.1016/j.jcta.2006.03.019.

[22]

G. GeY. Miao and Z. Yao, Optimal frequency hopping sequences: Auto-and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879. doi: 10.1109/TIT.2008.2009856.

[23]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming-correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94.

[24]

D. Peng and P. Fan, Lower bounds on the Hamming auto-and cross correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 2149-2154. doi: 10.1109/TIT.2004.833362.

[25]

W. RenF. Fu and Z. Zhou, New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Cryptogr., 72 (2014), 423-434. doi: 10.1007/s10623-012-9774-3.

[26]

P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inf. Theory, 44 (1998), 1492-1503. doi: 10.1109/18.681324.

[27]

L. Yang and G. B. Giannakis, Ultra-wideband communications: An idea whose time has come, IEEE Signal Process. Mag., 21 (2004), 26-54.

[28]

Y. YangX. TangP. Udaya and D. Peng, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inf. Theory, 57 (2011), 7605-7613. doi: 10.1109/TIT.2011.2162571.

[29]

X. ZengH. CaiX. Tang and Y. Yang, A class of optimal frequency hopping sequences with new parameters, IEEE Trans. Inf. Theory, 58 (2012), 4899-4907. doi: 10.1109/TIT.2012.2195771.

[30]

X. ZengH. CaiX. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248. doi: 10.1109/TIT.2013.2237754.

[31]

Z. ZhouX. TangD. Peng and U. Parampalli, New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 3831-3840. doi: 10.1109/TIT.2011.2137290.

[32]

Z. ZhouX. TangX. Niu and U. Parampalli, New classes of frequency hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012), 453-458. doi: 10.1109/TIT.2011.2167126.

show all references

References:
[1]

J. Bao and L. Ji, Frequency hopping sequences with optimal partial hamming correlation, IEEE Trans. Inf. Theory, 62 (2016), 3768-3783. doi: 10.1109/TIT.2016.2551225.

[2]

J. Bao and L. Ji, New families of optimal frequency hopping sequence sets, IEEE Trans. Inf. Theory, 62 (2016), 5209-5224. doi: 10.1109/TIT.2016.2589258.

[3]

Bluetooth Special Interest Group (SIG), Washington, DC, USA. (2003, Nov.). Specification of the Bluetooth Systems-Core [Online]. Available: http://www.bluetooth.org

[4]

H. CaiZ. ZhouY. Yang and X. Tang, A new construction of frequency hopping sequences with optimal partial Hamming correlation, IEEE Trans. Inf. Theory, 60 (2014), 5782-5790. doi: 10.1109/TIT.2014.2332996.

[5]

H. CaiY. YangZ. Zhou and X. Tang, Strictly optimal frequency-hopping sequence sets with optimal family sizes, IEEE Trans. Inf. Theory, 62 (2016), 1087-1093. doi: 10.1109/TIT.2015.2512859.

[6]

B. ChenL. LinS. Ling and H. Liu, Three new classes of optimal frequency-hopping sequence sets, Des. Codes Cryptogr., 83 (2017), 219-232. doi: 10.1007/s10623-016-0220-9.

[7]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141. doi: 10.1109/TIT.2004.842708.

[8]

J.-H. ChungG. Gong and K. Yang, New families of optimal frequency-hopping sequences by composite lengths, IEEE Trans. Inf. Theory, 60 (2014), 3688-3697. doi: 10.1109/TIT.2014.2315207.

[9]

J.-H. ChungY. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inf. Theory, 55 (2009), 5783-5791. doi: 10.1109/TIT.2009.2032742.

[10]

J.-H. Chung and K. Yang, $k$ -fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 2306-2317. doi: 10.1109/TIT.2011.2112235.

[11]

J.-H. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters, IEEE Trans. Inf. Theory, 56 (2010), 1685-1693. doi: 10.1109/TIT.2010.2040888.

[12]

C. J. Colbourn, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 2010. doi: 10. 1201/9781420049954.

[13]

C. DingR. Fuji-HaraY. FujiwaraM. Jimbo and M. Mishima, Sets of frequency hopping sequences: Bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009), 3297-3304. doi: 10.1109/TIT.2009.2021366.

[14]

C. DingM. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 53 (2007), 2606-2610. doi: 10.1109/TIT.2007.899545.

[15]

C. DingY. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010), 3605-3612. doi: 10.1109/TIT.2010.2048504.

[16]

C. Ding and J. Yin, Sets of optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 54 (2008), 3741-3745. doi: 10.1109/TIT.2008.926410.

[17]

Y.-C. EunS.-Y. JinY.-P. Hong and H.-Y. Song, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inf. Theory, 50 (2004), 2438-2442. doi: 10.1109/TIT.2004.834792.

[18]

C. FanH. Cai and X. Tang, A combinatorial construction for strictly optimal frequency-hopping sequences, IEEE Trans. Inf. Theory, 62 (2016), 4769-4774. doi: 10.1109/TIT.2016.2556710.

[19]

P. Fan and M. Darnell, Sequence Design for Communications Applications, London, U. K. : Wiley, 1996.

[20]

R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004), 2408-2420. doi: 10.1109/TIT.2004.834783.

[21]

G. GeR. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency-hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718. doi: 10.1016/j.jcta.2006.03.019.

[22]

G. GeY. Miao and Z. Yao, Optimal frequency hopping sequences: Auto-and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879. doi: 10.1109/TIT.2008.2009856.

[23]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming-correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94.

[24]

D. Peng and P. Fan, Lower bounds on the Hamming auto-and cross correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 2149-2154. doi: 10.1109/TIT.2004.833362.

[25]

W. RenF. Fu and Z. Zhou, New sets of frequency-hopping sequences with optimal Hamming correlation, Des. Codes Cryptogr., 72 (2014), 423-434. doi: 10.1007/s10623-012-9774-3.

[26]

P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inf. Theory, 44 (1998), 1492-1503. doi: 10.1109/18.681324.

[27]

L. Yang and G. B. Giannakis, Ultra-wideband communications: An idea whose time has come, IEEE Signal Process. Mag., 21 (2004), 26-54.

[28]

Y. YangX. TangP. Udaya and D. Peng, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inf. Theory, 57 (2011), 7605-7613. doi: 10.1109/TIT.2011.2162571.

[29]

X. ZengH. CaiX. Tang and Y. Yang, A class of optimal frequency hopping sequences with new parameters, IEEE Trans. Inf. Theory, 58 (2012), 4899-4907. doi: 10.1109/TIT.2012.2195771.

[30]

X. ZengH. CaiX. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248. doi: 10.1109/TIT.2013.2237754.

[31]

Z. ZhouX. TangD. Peng and U. Parampalli, New constructions for optimal sets of frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 3831-3840. doi: 10.1109/TIT.2011.2137290.

[32]

Z. ZhouX. TangX. Niu and U. Parampalli, New classes of frequency hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012), 453-458. doi: 10.1109/TIT.2011.2167126.

Table Ⅰ.  SOME KNOWN FHS SETS WITH OPTIMA HAMMING CORRELATION
LengthNumber of sequences $H_{max}$Alphabet sizeConstraintsReference
$p(q-1)$ $\left\lfloor \frac{c}{p}\right\rfloor$ $pd$ $c+1$ $q-1=cd$, $c\geq p(d+1)$, gcd$(p, q-1)=1$[25]
$q^m-1$ $q^u$ $q^{m-u}$ $q^u$ $m > u \geq 1$[31]
$\frac{q^m-1}{d}$ $d$ $\frac{q^{m-u}-1}{d}$ $q^u$ $d|q-1$, $ m > u \geq 1$, gcd$(d, m)=1$[31]
$\frac{q+1}{d}$ $d(q-1)$ $1$ $q$ $q+1\equiv d \pmod {2d}$[15]
$2^{2u}+1$ $2^{2u}-1$ $2^u+1$ $2^u$[13]
$up^2$ $\left\lfloor \frac{p}{u}\right\rfloor$ $up$ $p$ $ p>u\geq 2$[9]
$u\frac{q^m-1}{d}$ $\left\lfloor \frac{d}{u}\right\rfloor$ $u\frac{q^{m-1}-1}{d}$ $q$ $ d\geq u \geq 2$, $d|q-1$, gcd$(m, d)=1$[9]
$v$ $f$ $e$ $\frac{v-1}{e}+1$ $v$ is not a prime or $v$ is a prime with $f\geq e >1$[30]
$\frac{w(q^m-1)}{d}$ $d$ $\frac{q^{m-u}-1}{d}$ $wq^u$ $d|q-1$, gcd$(d, m)=1$, $q_1>q^{m-u}$, $m > u \geq 1$[2]
$vw$ $f$ $e$ $\frac{v-1}{e}w+\frac{w-1}{e^{'}}+1$ $e\geq e'\geq 2$, $v\geq e^2$, $q_1\geq p_1> 2e$[2]
$vwu(q-1)$ $\lfloor \frac{c}{u}\rfloor$ $ud$ $cvw+\frac{(v-1)w}{e}+\frac{w-1}{e^{'}}+1$ $q-1=cd$, $c\geq u(d+1)$, $d\geq e\geq e'\geq 2$, gcd$(u, q-1)=1$, $q_1 \geq p_1> q-1$[2]
$vu(q-1)$ $\lfloor\frac{f}{u}\rfloor$ $eu$ $\frac{vq-q}{e}+c+1$ $q-1=cd$, $c \geq u(d+1)$, gcd$(u, q-1)=1$, $q\geq \max\{p_1-1, 4ue\}$, $e\geq d$, $p_1> 2ue$, $v \geq 4e^2u$[2]
$m, u, c$ and $d$ are positive integers;
$p$ is a prime and $q$ is a prime power;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 <p_2<\ldots<p_s$;
$e$ is an integer such that $e|gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\ldots<q_t$;
$e'$ is an integer such that $e'|gcd(q_1-1, q_2-1, \ldots, q_t-1)$
LengthNumber of sequences $H_{max}$Alphabet sizeConstraintsReference
$p(q-1)$ $\left\lfloor \frac{c}{p}\right\rfloor$ $pd$ $c+1$ $q-1=cd$, $c\geq p(d+1)$, gcd$(p, q-1)=1$[25]
$q^m-1$ $q^u$ $q^{m-u}$ $q^u$ $m > u \geq 1$[31]
$\frac{q^m-1}{d}$ $d$ $\frac{q^{m-u}-1}{d}$ $q^u$ $d|q-1$, $ m > u \geq 1$, gcd$(d, m)=1$[31]
$\frac{q+1}{d}$ $d(q-1)$ $1$ $q$ $q+1\equiv d \pmod {2d}$[15]
$2^{2u}+1$ $2^{2u}-1$ $2^u+1$ $2^u$[13]
$up^2$ $\left\lfloor \frac{p}{u}\right\rfloor$ $up$ $p$ $ p>u\geq 2$[9]
$u\frac{q^m-1}{d}$ $\left\lfloor \frac{d}{u}\right\rfloor$ $u\frac{q^{m-1}-1}{d}$ $q$ $ d\geq u \geq 2$, $d|q-1$, gcd$(m, d)=1$[9]
$v$ $f$ $e$ $\frac{v-1}{e}+1$ $v$ is not a prime or $v$ is a prime with $f\geq e >1$[30]
$\frac{w(q^m-1)}{d}$ $d$ $\frac{q^{m-u}-1}{d}$ $wq^u$ $d|q-1$, gcd$(d, m)=1$, $q_1>q^{m-u}$, $m > u \geq 1$[2]
$vw$ $f$ $e$ $\frac{v-1}{e}w+\frac{w-1}{e^{'}}+1$ $e\geq e'\geq 2$, $v\geq e^2$, $q_1\geq p_1> 2e$[2]
$vwu(q-1)$ $\lfloor \frac{c}{u}\rfloor$ $ud$ $cvw+\frac{(v-1)w}{e}+\frac{w-1}{e^{'}}+1$ $q-1=cd$, $c\geq u(d+1)$, $d\geq e\geq e'\geq 2$, gcd$(u, q-1)=1$, $q_1 \geq p_1> q-1$[2]
$vu(q-1)$ $\lfloor\frac{f}{u}\rfloor$ $eu$ $\frac{vq-q}{e}+c+1$ $q-1=cd$, $c \geq u(d+1)$, gcd$(u, q-1)=1$, $q\geq \max\{p_1-1, 4ue\}$, $e\geq d$, $p_1> 2ue$, $v \geq 4e^2u$[2]
$m, u, c$ and $d$ are positive integers;
$p$ is a prime and $q$ is a prime power;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 <p_2<\ldots<p_s$;
$e$ is an integer such that $e|gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\ldots<q_t$;
$e'$ is an integer such that $e'|gcd(q_1-1, q_2-1, \ldots, q_t-1)$
Table Ⅱ.  SOME KNOWN FHS SETS WITH OPTIMAL PARTIAL HAMMING CORRELATION
LengthAlphabet size $H_{max}$ over correlation window of length LNumber of sequencesConstraintsSource
$\frac{q^m-1}{d}$ $q^{m-1}$ $\left\lceil \frac{L(q-1)}{q^m-1}\right\rceil$ $d$ $d|(q-1)$, gcd$(d, m)=1$[32]
$ev$ $v$ $\left\lceil \frac{L}{v}\right\rceil$ $f$[4]
$ p(p^m-1)$ $p^{m}$ $\left\lceil\frac{L}{p^{m}-1}\right\rceil$ $p^{m-1}$ $m\geq 2$[5]
$evw$ $(v-1)w+\frac{ew}{r}$ $\left\lceil \frac{L}{vw}\right\rceil$ $f$ $q_1\geq p_1>2e$, $r|e$ $v\geq \frac{p_1e}{r}$ and $gcd(w, e)=1$[1]
$v\frac{q^m-1}{d}$ $vq^{m-1} $ $\left\lceil \frac{(q-1)L}{v(q^{m}-1)}\right\rceil$ $d$ $m>1, $ $q^m \leq p_1$ and $gcd(d, m)=1, $ $d|q-1$, $\frac{q^m-1}{d}|p_i-1$ for $1\leq i \leq s$[1]
$q$ is a prime power and $p$ is a prime;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 < p_2<\cdots <p_s$;
$e, f$ are integers such that $e>1$ and $e|gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\cdots <q_t$;
$r$ is an integer such that $r>1$ and $r|gcd(q_1-1, q_2-1, \ldots, q_t-1)$;
$d, m$ are positive integers.
LengthAlphabet size $H_{max}$ over correlation window of length LNumber of sequencesConstraintsSource
$\frac{q^m-1}{d}$ $q^{m-1}$ $\left\lceil \frac{L(q-1)}{q^m-1}\right\rceil$ $d$ $d|(q-1)$, gcd$(d, m)=1$[32]
$ev$ $v$ $\left\lceil \frac{L}{v}\right\rceil$ $f$[4]
$ p(p^m-1)$ $p^{m}$ $\left\lceil\frac{L}{p^{m}-1}\right\rceil$ $p^{m-1}$ $m\geq 2$[5]
$evw$ $(v-1)w+\frac{ew}{r}$ $\left\lceil \frac{L}{vw}\right\rceil$ $f$ $q_1\geq p_1>2e$, $r|e$ $v\geq \frac{p_1e}{r}$ and $gcd(w, e)=1$[1]
$v\frac{q^m-1}{d}$ $vq^{m-1} $ $\left\lceil \frac{(q-1)L}{v(q^{m}-1)}\right\rceil$ $d$ $m>1, $ $q^m \leq p_1$ and $gcd(d, m)=1, $ $d|q-1$, $\frac{q^m-1}{d}|p_i-1$ for $1\leq i \leq s$[1]
$q$ is a prime power and $p$ is a prime;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 < p_2<\cdots <p_s$;
$e, f$ are integers such that $e>1$ and $e|gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\cdots <q_t$;
$r$ is an integer such that $r>1$ and $r|gcd(q_1-1, q_2-1, \ldots, q_t-1)$;
$d, m$ are positive integers.
Table Ⅲ.  NEW FHS SETS WITH OPTIMAL PARTIAL HAMMING CORRELATION
LengthAlphabet size $H_{max}$Number of sequencesConstraintsReference
$\frac{w(q^m-1)}{d}$ $(q^{m-1}-1+\frac{q-1}{d})w$ $\frac{q-1}{d}$ $d$ $m\geq 3$, $d|q-1$, gcd$(m, d)=1$, $q_1>q, $Corollary 6
$wp(p^m-1)$ $p^{m}w$ $p$ $p^{m-1}$ $m>1, \ $ and $q_1>p^m, $Corollary 7
$ewv$ $(v-1+e)w$ $e$ $f$ $q_1>p_1-1$, If $v$ is not a prime with $f>1$ or $v$ is a prime with $f\geq e$, Corollary 8
$pv(p^m-1)$ $vp^m$ $p$ $f_1$ $p|p_i-1$, $f_1=\frac{p_1-1}{p}\geq 2$, $p^m >p_1-1$, $p^m>2(1+p)$Corollary 9
$(q'-1)\frac{q^m-1}{d}$ $(q^{m-1}-1+\frac{q-1}{d})q'$ $\frac{q-1}{d}$ $d$ $d|q-1$, gcd$(m, d)=1$, $d\geq 2$ $gcd(q'-1, \frac{q-1}{d})=1$, $q'>q+1$Corollary 10
$(q-1)p(p^m-1)$ $p^{m}q$ $p$ $p^{m-1}$ $p^{m}-3p\geq 1$, $q\geq p^m$, $gcd(q-1, p)=1$, $m>1$Corollary 11
$ev(q-1)$ $(v-1+e)q$ $e$ $f$ $q> p_1-1$, $v\geq e^3f^2$, $q\geq 2e+5$, $gcd(q-1, e)=1$, $f>1$Corollary 12
$q, q'$ are prime powers and $p$ is a prime;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 < p_2<\ldots<p_s$;
$e$ is an integer such that $e| gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is any an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\ldots<q_t$;
$d, m$ are positive integers.
LengthAlphabet size $H_{max}$Number of sequencesConstraintsReference
$\frac{w(q^m-1)}{d}$ $(q^{m-1}-1+\frac{q-1}{d})w$ $\frac{q-1}{d}$ $d$ $m\geq 3$, $d|q-1$, gcd$(m, d)=1$, $q_1>q, $Corollary 6
$wp(p^m-1)$ $p^{m}w$ $p$ $p^{m-1}$ $m>1, \ $ and $q_1>p^m, $Corollary 7
$ewv$ $(v-1+e)w$ $e$ $f$ $q_1>p_1-1$, If $v$ is not a prime with $f>1$ or $v$ is a prime with $f\geq e$, Corollary 8
$pv(p^m-1)$ $vp^m$ $p$ $f_1$ $p|p_i-1$, $f_1=\frac{p_1-1}{p}\geq 2$, $p^m >p_1-1$, $p^m>2(1+p)$Corollary 9
$(q'-1)\frac{q^m-1}{d}$ $(q^{m-1}-1+\frac{q-1}{d})q'$ $\frac{q-1}{d}$ $d$ $d|q-1$, gcd$(m, d)=1$, $d\geq 2$ $gcd(q'-1, \frac{q-1}{d})=1$, $q'>q+1$Corollary 10
$(q-1)p(p^m-1)$ $p^{m}q$ $p$ $p^{m-1}$ $p^{m}-3p\geq 1$, $q\geq p^m$, $gcd(q-1, p)=1$, $m>1$Corollary 11
$ev(q-1)$ $(v-1+e)q$ $e$ $f$ $q> p_1-1$, $v\geq e^3f^2$, $q\geq 2e+5$, $gcd(q-1, e)=1$, $f>1$Corollary 12
$q, q'$ are prime powers and $p$ is a prime;
$v$ is an integer with prime factor decomposition $v=p_1^{m_1}p_2^{m_2}\cdots p_s^{m_s}$ with $p_1 < p_2<\ldots<p_s$;
$e$ is an integer such that $e| gcd(p_1-1, p_2-1, \ldots, p_s-1)$, and $f=\frac{p_1-1}{e}$;
$w$ is any an integer with prime factor decomposition $w=q_1^{n_1}q_2^{n_2}\cdots q_t^{n_t}$ with $q_1<q_2<\ldots<q_t$;
$d, m$ are positive integers.
[1]

Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009

[2]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[3]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[4]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[5]

Gérard Cohen, Alexander Vardy. Duality between packings and coverings of the Hamming space. Advances in Mathematics of Communications, 2007, 1 (1) : 93-97. doi: 10.3934/amc.2007.1.93

[6]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[7]

Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91-101. doi: 10.3934/amc.2013.7.91

[8]

Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293-310. doi: 10.3934/amc.2013.7.293

[9]

Marcello Trovati, Peter Ashwin, Nigel Byott. Packings induced by piecewise isometries cannot contain the arbelos. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 791-806. doi: 10.3934/dcds.2008.22.791

[10]

Ewa Schmeidel, Karol Gajda, Tomasz Gronek. On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2681-2690. doi: 10.3934/dcdsb.2014.19.2681

[11]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[12]

Yang Yang, Guang Gong, Xiaohu Tang. On $\omega$-cyclic-conjugated-perfect quaternary GDJ sequences. Advances in Mathematics of Communications, 2016, 10 (2) : 321-331. doi: 10.3934/amc.2016008

[13]

Lenny Fukshansky, Ahmad A. Shaar. A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181-188. doi: 10.3934/amc.2018012

[14]

Zhengchun Zhou, Xiaohu Tang. New nearly optimal codebooks from relative difference sets. Advances in Mathematics of Communications, 2011, 5 (3) : 521-527. doi: 10.3934/amc.2011.5.521

[15]

Shay Kels, Nira Dyn. Bernstein-type approximation of set-valued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1041-1060. doi: 10.3934/dcds.2014.34.1041

[16]

Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443

[17]

Yilun Shang. Group pinning consensus under fixed and randomly switching topologies with acyclic partition. Networks & Heterogeneous Media, 2014, 9 (3) : 553-573. doi: 10.3934/nhm.2014.9.553

[18]

Tongjiang Yan, Yanyan Liu, Yuhua Sun. Cyclic codes from two-prime generalized cyclotomic sequences of order 6. Advances in Mathematics of Communications, 2016, 10 (4) : 707-723. doi: 10.3934/amc.2016036

[19]

Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002

[20]

Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (52)
  • HTML views (171)
  • Cited by (0)

Other articles
by authors

[Back to Top]