November 2017, 11(4): 705-713. doi: 10.3934/amc.2017051

Constant dimension codes from Riemann-Roch spaces

1. 

Department of Mathematics and Computer Science, University of Perugia, Via Vanvitelli 1, 06123 Perugia, Italy

2. 

Department of Mathematics, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy

Received  February 2016 Revised  June 2017 Published  November 2017

Fund Project: The research of D. Bartoli and M. Giulietti was supported by Ministry for Education, University and Research of Italy (MIUR) (Project "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA -INdAM)

Some families of constant dimension codes arising from Riemann-Roch spaces associated with particular divisors of a curve $\mathcal{X}$ are constructed. These families are generalizations of the one constructed by Hansen.

Citation: Daniele Bartoli, Matteo Bonini, Massimo Giulietti. Constant dimension codes from Riemann-Roch spaces. Advances in Mathematics of Communications, 2017, 11 (4) : 705-713. doi: 10.3934/amc.2017051
References:
[1]

D. Bartoli and F. Pavese, A note on Equidistant subspaces codes, Discrete Appl. Math., 198 (2016), 291-296. doi: 10.1016/j.dam.2015.06.017.

[2]

A. Cossidente and F. Pavese, On subspace codes, Des. Codes Cryptogr., 78 (2016), 527-531. doi: 10.1007/s10623-014-0018-6.

[3]

T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, 55 (2009), 2909-2919. doi: 10.1109/TIT.2009.2021376.

[4]

T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, 59 (2013), 1004-1017. doi: 10.1109/TIT.2012.2220119.

[5]

T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57 (2011), 1165-1173. doi: 10.1109/TIT.2010.2095232.

[6]

M. Gadouleau and Z. Yan, Constant-rank codes and their connection to constant-dimension codes, IEEE Trans. Inform. Theory, 56 (2010), 3207-3216. doi: 10.1109/TIT.2010.2048447.

[7]

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 2nd edition, 1994.

[8]

J. P. Hansen, Riemann-Roch theorem and linear network codes, Int. J. Math. Comput. Sci., 10 (2015), 1-11.

[9]

T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4, in Topics in Finite Fields, Gohar Kyureghyan, Gary L. Mullen, Alexander Pott Editors, Contemporary Mathematics, 632 (2015), 157-176.

[10]

A. Khaleghi, D. Silva and F. R. Kschischang, Subspace codes, Cryptography and coding, in Lecture Notes in Compututer Science, Springer, Berlin, 5921 (2009), 1-21.

[11]

R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. on Inform. Theory, 54 (2008), 3579-3591. doi: 10.1109/TIT.2008.926449.

[12]

D. SilvaF. R. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967. doi: 10.1109/TIT.2008.928291.

[13]

A. L. Trautmann and J. Rosenthal, New improvements on the echelon-ferrers construction, in Proc. Int. Symp. on Math. Theory of Networks and Systems, 2010,405-408

show all references

References:
[1]

D. Bartoli and F. Pavese, A note on Equidistant subspaces codes, Discrete Appl. Math., 198 (2016), 291-296. doi: 10.1016/j.dam.2015.06.017.

[2]

A. Cossidente and F. Pavese, On subspace codes, Des. Codes Cryptogr., 78 (2016), 527-531. doi: 10.1007/s10623-014-0018-6.

[3]

T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams, IEEE Trans. Inform. Theory, 55 (2009), 2909-2919. doi: 10.1109/TIT.2009.2021376.

[4]

T. Etzion and N. Silberstein, Codes and designs related to lifted MRD codes, IEEE Trans. Inform. Theory, 59 (2013), 1004-1017. doi: 10.1109/TIT.2012.2220119.

[5]

T. Etzion and A. Vardy, Error-correcting codes in projective space, IEEE Trans. Inform. Theory, 57 (2011), 1165-1173. doi: 10.1109/TIT.2010.2095232.

[6]

M. Gadouleau and Z. Yan, Constant-rank codes and their connection to constant-dimension codes, IEEE Trans. Inform. Theory, 56 (2010), 3207-3216. doi: 10.1109/TIT.2010.2048447.

[7]

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 2nd edition, 1994.

[8]

J. P. Hansen, Riemann-Roch theorem and linear network codes, Int. J. Math. Comput. Sci., 10 (2015), 1-11.

[9]

T. Honold, M. Kiermaier and S. Kurz, Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4, in Topics in Finite Fields, Gohar Kyureghyan, Gary L. Mullen, Alexander Pott Editors, Contemporary Mathematics, 632 (2015), 157-176.

[10]

A. Khaleghi, D. Silva and F. R. Kschischang, Subspace codes, Cryptography and coding, in Lecture Notes in Compututer Science, Springer, Berlin, 5921 (2009), 1-21.

[11]

R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. on Inform. Theory, 54 (2008), 3579-3591. doi: 10.1109/TIT.2008.926449.

[12]

D. SilvaF. R. Kschischang and R. Koetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3951-3967. doi: 10.1109/TIT.2008.928291.

[13]

A. L. Trautmann and J. Rosenthal, New improvements on the echelon-ferrers construction, in Proc. Int. Symp. on Math. Theory of Networks and Systems, 2010,405-408

Table 1.  Normalized weight, rate, and normalized minimal distance, $s>1$
Normalized weightRateNormalized minimum distance
$\mathcal{H}_{k,s}$$\frac{ks+1-g}{nk+1-g}$$\frac{\log_q \binom{n}{s}}{(nk+1-g)(ks+1-g)}$$ \frac{1}{s+\frac{1-g}{k}}$
$\mathcal{A}_{k,s}$$\frac{ks+1-g}{nks+1-g}$$\frac{\log_q \binom{n+s-1}{s}}{(nks+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
$\mathcal{B}_{k,s,w}$$\frac{ks+1-g}{nkw+1-g}$$\frac{\log_q U_{n,s,0,w}}{(nkw+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
$\mathcal{C}_{k,s,w}$$\frac{ks+1-g}{nkw+1-g}$$\frac{\log_q U^{\prime}_{n,s,s-w(n-1),w}}{(nkw+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
Normalized weightRateNormalized minimum distance
$\mathcal{H}_{k,s}$$\frac{ks+1-g}{nk+1-g}$$\frac{\log_q \binom{n}{s}}{(nk+1-g)(ks+1-g)}$$ \frac{1}{s+\frac{1-g}{k}}$
$\mathcal{A}_{k,s}$$\frac{ks+1-g}{nks+1-g}$$\frac{\log_q \binom{n+s-1}{s}}{(nks+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
$\mathcal{B}_{k,s,w}$$\frac{ks+1-g}{nkw+1-g}$$\frac{\log_q U_{n,s,0,w}}{(nkw+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
$\mathcal{C}_{k,s,w}$$\frac{ks+1-g}{nkw+1-g}$$\frac{\log_q U^{\prime}_{n,s,s-w(n-1),w}}{(nkw+1-g)(ks+1-g)}$$\frac{1}{s+\frac{1-g}{k}}$
Table 2.  Normalized weight, rate, and normalized minimal distance for $g=1$, $s>1$
Normalized weightRateNormalized minimum distance
$\mathcal{H}_{k,s}$$\frac{s}{n}$$\frac{\log_q \binom{n}{s}}{nk^2s}$$ \frac{1}{s}$
$\mathcal{A}_{k,s}$$\frac{1}{s}$$\frac{\log_q \binom{n+s-1}{s}}{nk^2s^2}$$\frac{1}{s}$
$\mathcal{B}_{k,s,w}$$\frac{s}{nw}$$\frac{\log_q U_{n,s,0,w}}{nk^2ws}$$\frac{1}{s}$
$\mathcal{C}_{k,s,w}$$\frac{s}{nw}$$\frac{\log_q U^{\prime}_{n,s,s-w(n-1),w}}{nk^2ws}$$\frac{1}{s}$
Normalized weightRateNormalized minimum distance
$\mathcal{H}_{k,s}$$\frac{s}{n}$$\frac{\log_q \binom{n}{s}}{nk^2s}$$ \frac{1}{s}$
$\mathcal{A}_{k,s}$$\frac{1}{s}$$\frac{\log_q \binom{n+s-1}{s}}{nk^2s^2}$$\frac{1}{s}$
$\mathcal{B}_{k,s,w}$$\frac{s}{nw}$$\frac{\log_q U_{n,s,0,w}}{nk^2ws}$$\frac{1}{s}$
$\mathcal{C}_{k,s,w}$$\frac{s}{nw}$$\frac{\log_q U^{\prime}_{n,s,s-w(n-1),w}}{nk^2ws}$$\frac{1}{s}$
Table 3.  Rates of $\mathcal{H}_{k,s}$, $\mathcal{A}_{k,s}$, $\mathcal{B}_{k,s,w}$, $\mathcal{C}_{k,s,w}$ for $q=16$, $8\leq n\leq 14$, $1\leq s <n$, $w=3$, $k=5$
$(n,s)$ $\mathcal{H}_{k,s}$ $\mathcal{A}_{k,s}$ $\mathcal{B}_{k,s,w}$ $\mathcal{C}_{k,s,w}$
$(8,1)$ $0.003750$ $0.003750$ $0.001250$ $0.008732$
$(8,2)$ $0.003005$ $0.001616$ $0.001077$ $0.004286$
$(8,3)$ $0.002420$ $0.000959$ $0.000959$ $0.002802$
$(8,4)$ $0.001915$ $0.000654$ $0.000868$ $0.002058$
$(8,5)$ $0.001452$ $0.000481$ $0.000792$ $0.001611$
$(8,6)$ $0.001002$ $0.000373$ $0.000728$ $0.001311$
$(8,7)$ $0.000536$ $0.000300$ $0.000671$ $0.001095$
$(9,1)$ $0.003522$ $0.003522$ $0.001174$ $0.008931$
$(9,2)$ $0.002872$ $0.001526$ $0.001017$ $0.004394$
$(9,3)$ $0.002368$ $0.000909$ $0.000909$ $0.002880$
$(9,4)$ $0.001938$ $0.000622$ $0.000826$ $0.002121$
$(9,5)$ $0.001551$ $0.000459$ $0.000758$ $0.001665$
$(9,6)$ $0.001184$ $0.000357$ $0.000700$ $0.001360$
$(9,7)$ $0.000821$ $0.000287$ $0.000649$ $0.001141$
$(9,8)$ $0.000440$ $0.000237$ $0.000604$ $0.000976$
$(10,1)$ $0.003322$ $0.003322$ $0.001107$ $0.009093$
$(10,2)$ $0.002746$ $0.001445$ $0.000964$ $0.004482$
$(10,3)$ $0.002302$ $0.000865$ $0.000865$ $0.002943$
$(10,4)$ $0.001929$ $0.000593$ $0.000788$ $0.002173$
$(10,5)$ $0.001595$ $0.000439$ $0.000726$ $0.001710$
$(10,6)$ $0.001286$ $0.000341$ $0.000673$ $0.001400$
$(10,7)$ $0.000987$ $0.000275$ $0.000627$ $0.001178$
$(10,8)$ $0.000686$ $0.000228$ $0.000586$ $0.001011$
$(10,9)$ $0.000369$ $0.000192$ $0.000549$ $0.000880$
$(11,1)$ $0.003145$ $0.003145$ $0.001048$ $0.009229$
$(11,2)$ $0.002628$ $0.001374$ $0.000916$ $0.004555$
$(11,3)$ $0.002232$ $0.000824$ $0.000824$ $0.002996$
$(11,4)$ $0.001901$ $0.000566$ $0.000754$ $0.002215$
$(11,5)$ $0.001609$ $0.000420$ $0.000697$ $0.001746$
$(11,6)$ $0.001341$ $0.000327$ $0.000648$ $0.001433$
$(11,7)$ $0.001087$ $0.000264$ $0.000606$ $0.001209$
$(11,8)$ $0.000837$ $0.000219$ $0.000568$ $0.001040$
$(11,9)$ $0.000584$ $0.000185$ $0.000534$ $0.000908$
$(11,10)$ $0.000314$ $0.000159$ $0.000503$ $0.000802$
$(12,1)$ $0.002987$ $0.002987$ $0.000996$ $0.009343$
$(12,2)$ $0.002518$ $0.001309$ $0.000873$ $0.004617$
$(12,3)$ $0.002161$ $0.000788$ $0.000788$ $0.003040$
$(12,4)$ $0.001865$ $0.000542$ $0.000722$ $0.002251$
$(12,5)$ $0.001605$ $0.000403$ $0.000669$ $0.001778$
$(12,6)$ $0.001368$ $0.000315$ $0.000624$ $0.001461$
$(12,7)$ $0.001146$ $0.000254$ $0.000585$ $0.001234$
$(12,8)$ $0.000932$ $0.000211$ $0.000551$ $0.001064$
$(12,9)$ $0.000720$ $0.000179$ $0.000519$ $0.000931$
$(12,10)$ $0.000504$ $0.000154$ $0.000491$ $0.000824$
$(12,11)$ $0.000272$ $0.000134$ $0.000465$ $0.000736$
$(13,1)$ $0.002846$ $0.002846$ $0.000949$ $0.009440$
$(13,2)$ $0.002417$ $0.001251$ $0.000834$ $0.004670$
$(13,3)$ $0.002092$ $0.000755$ $0.000755$ $0.003079$
$(13,4)$ $0.001823$ $0.000521$ $0.000694$ $0.002282$
$(13,5)$ $0.001589$ $0.000388$ $0.000644$ $0.001804$
$(13,6)$ $0.001378$ $0.000303$ $0.000602$ $0.001485$
$(13,7)$ $0.001181$ $0.000245$ $0.000566$ $0.001256$
$(13,8)$ $0.000993$ $0.000204$ $0.000533$ $0.001085$
$(13,9)$ $0.000810$ $0.000173$ $0.000505$ $0.000950$
$(13,10)$ $0.000628$ $0.000148$ $0.000478$ $0.000843$
$(13,11)$ $0.000440$ $0.000129$ $0.000454$ $0.000755$
$(13,12)$ $0.000237$ $0.000114$ $0.000432$ $0.000681$
$(14,1)$ $0.002720$ $0.002720$ $0.000907$ $0.009486$
$(14,2)$ $0.002324$ $0.001199$ $0.000799$ $0.004705$
$(14,3)$ $0.002026$ $0.000725$ $0.000725$ $0.003102$
$(14,4)$ $0.001780$ $0.000501$ $0.000667$ $0.002307$
$(14,5)$ $0.001567$ $0.000373$ $0.000621$ $0.001827$
$(14,6)$ $0.001375$ $0.000292$ $0.000581$ $0.001511$
$(14,7)$ $0.001198$ $0.000237$ $0.000547$ $0.001252$
$(14,8)$ $0.001031$ $0.000197$ $0.000517$ $0.001106$
$(14,9)$ $0.000870$ $0.000167$ $0.000490$ $0.000974$
$(14,10)$ $0.000712$ $0.000144$ $0.000466$ $0.000865$
$(14,11)$ $0.000552$ $0.000125$ $0.000443$ $0.000768$
$(14,12)$ $0.000387$ $0.000111$ $0.000422$ $0.000699$
$(14,13)$ $0.000209$ $0.000099$ $0.000403$ $0.000635$
$(n,s)$ $\mathcal{H}_{k,s}$ $\mathcal{A}_{k,s}$ $\mathcal{B}_{k,s,w}$ $\mathcal{C}_{k,s,w}$
$(8,1)$ $0.003750$ $0.003750$ $0.001250$ $0.008732$
$(8,2)$ $0.003005$ $0.001616$ $0.001077$ $0.004286$
$(8,3)$ $0.002420$ $0.000959$ $0.000959$ $0.002802$
$(8,4)$ $0.001915$ $0.000654$ $0.000868$ $0.002058$
$(8,5)$ $0.001452$ $0.000481$ $0.000792$ $0.001611$
$(8,6)$ $0.001002$ $0.000373$ $0.000728$ $0.001311$
$(8,7)$ $0.000536$ $0.000300$ $0.000671$ $0.001095$
$(9,1)$ $0.003522$ $0.003522$ $0.001174$ $0.008931$
$(9,2)$ $0.002872$ $0.001526$ $0.001017$ $0.004394$
$(9,3)$ $0.002368$ $0.000909$ $0.000909$ $0.002880$
$(9,4)$ $0.001938$ $0.000622$ $0.000826$ $0.002121$
$(9,5)$ $0.001551$ $0.000459$ $0.000758$ $0.001665$
$(9,6)$ $0.001184$ $0.000357$ $0.000700$ $0.001360$
$(9,7)$ $0.000821$ $0.000287$ $0.000649$ $0.001141$
$(9,8)$ $0.000440$ $0.000237$ $0.000604$ $0.000976$
$(10,1)$ $0.003322$ $0.003322$ $0.001107$ $0.009093$
$(10,2)$ $0.002746$ $0.001445$ $0.000964$ $0.004482$
$(10,3)$ $0.002302$ $0.000865$ $0.000865$ $0.002943$
$(10,4)$ $0.001929$ $0.000593$ $0.000788$ $0.002173$
$(10,5)$ $0.001595$ $0.000439$ $0.000726$ $0.001710$
$(10,6)$ $0.001286$ $0.000341$ $0.000673$ $0.001400$
$(10,7)$ $0.000987$ $0.000275$ $0.000627$ $0.001178$
$(10,8)$ $0.000686$ $0.000228$ $0.000586$ $0.001011$
$(10,9)$ $0.000369$ $0.000192$ $0.000549$ $0.000880$
$(11,1)$ $0.003145$ $0.003145$ $0.001048$ $0.009229$
$(11,2)$ $0.002628$ $0.001374$ $0.000916$ $0.004555$
$(11,3)$ $0.002232$ $0.000824$ $0.000824$ $0.002996$
$(11,4)$ $0.001901$ $0.000566$ $0.000754$ $0.002215$
$(11,5)$ $0.001609$ $0.000420$ $0.000697$ $0.001746$
$(11,6)$ $0.001341$ $0.000327$ $0.000648$ $0.001433$
$(11,7)$ $0.001087$ $0.000264$ $0.000606$ $0.001209$
$(11,8)$ $0.000837$ $0.000219$ $0.000568$ $0.001040$
$(11,9)$ $0.000584$ $0.000185$ $0.000534$ $0.000908$
$(11,10)$ $0.000314$ $0.000159$ $0.000503$ $0.000802$
$(12,1)$ $0.002987$ $0.002987$ $0.000996$ $0.009343$
$(12,2)$ $0.002518$ $0.001309$ $0.000873$ $0.004617$
$(12,3)$ $0.002161$ $0.000788$ $0.000788$ $0.003040$
$(12,4)$ $0.001865$ $0.000542$ $0.000722$ $0.002251$
$(12,5)$ $0.001605$ $0.000403$ $0.000669$ $0.001778$
$(12,6)$ $0.001368$ $0.000315$ $0.000624$ $0.001461$
$(12,7)$ $0.001146$ $0.000254$ $0.000585$ $0.001234$
$(12,8)$ $0.000932$ $0.000211$ $0.000551$ $0.001064$
$(12,9)$ $0.000720$ $0.000179$ $0.000519$ $0.000931$
$(12,10)$ $0.000504$ $0.000154$ $0.000491$ $0.000824$
$(12,11)$ $0.000272$ $0.000134$ $0.000465$ $0.000736$
$(13,1)$ $0.002846$ $0.002846$ $0.000949$ $0.009440$
$(13,2)$ $0.002417$ $0.001251$ $0.000834$ $0.004670$
$(13,3)$ $0.002092$ $0.000755$ $0.000755$ $0.003079$
$(13,4)$ $0.001823$ $0.000521$ $0.000694$ $0.002282$
$(13,5)$ $0.001589$ $0.000388$ $0.000644$ $0.001804$
$(13,6)$ $0.001378$ $0.000303$ $0.000602$ $0.001485$
$(13,7)$ $0.001181$ $0.000245$ $0.000566$ $0.001256$
$(13,8)$ $0.000993$ $0.000204$ $0.000533$ $0.001085$
$(13,9)$ $0.000810$ $0.000173$ $0.000505$ $0.000950$
$(13,10)$ $0.000628$ $0.000148$ $0.000478$ $0.000843$
$(13,11)$ $0.000440$ $0.000129$ $0.000454$ $0.000755$
$(13,12)$ $0.000237$ $0.000114$ $0.000432$ $0.000681$
$(14,1)$ $0.002720$ $0.002720$ $0.000907$ $0.009486$
$(14,2)$ $0.002324$ $0.001199$ $0.000799$ $0.004705$
$(14,3)$ $0.002026$ $0.000725$ $0.000725$ $0.003102$
$(14,4)$ $0.001780$ $0.000501$ $0.000667$ $0.002307$
$(14,5)$ $0.001567$ $0.000373$ $0.000621$ $0.001827$
$(14,6)$ $0.001375$ $0.000292$ $0.000581$ $0.001511$
$(14,7)$ $0.001198$ $0.000237$ $0.000547$ $0.001252$
$(14,8)$ $0.001031$ $0.000197$ $0.000517$ $0.001106$
$(14,9)$ $0.000870$ $0.000167$ $0.000490$ $0.000974$
$(14,10)$ $0.000712$ $0.000144$ $0.000466$ $0.000865$
$(14,11)$ $0.000552$ $0.000125$ $0.000443$ $0.000768$
$(14,12)$ $0.000387$ $0.000111$ $0.000422$ $0.000699$
$(14,13)$ $0.000209$ $0.000099$ $0.000403$ $0.000635$
[1]

Anna-Lena Trautmann. Isometry and automorphisms of constant dimension codes. Advances in Mathematics of Communications, 2013, 7 (2) : 147-160. doi: 10.3934/amc.2013.7.147

[2]

Natalia Silberstein, Tuvi Etzion. Large constant dimension codes and lexicodes. Advances in Mathematics of Communications, 2011, 5 (2) : 177-189. doi: 10.3934/amc.2011.5.177

[3]

Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055

[4]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[5]

Tatsuya Maruta, Yusuke Oya. On optimal ternary linear codes of dimension 6. Advances in Mathematics of Communications, 2011, 5 (3) : 505-520. doi: 10.3934/amc.2011.5.505

[6]

Thomas Honold, Michael Kiermaier, Sascha Kurz. Constructions and bounds for mixed-dimension subspace codes. Advances in Mathematics of Communications, 2016, 10 (3) : 649-682. doi: 10.3934/amc.2016033

[7]

B. K. Dass, Namita Sharma, Rashmi Verma. Characterization of extended Hamming and Golay codes as perfect codes in poset block spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 629-639. doi: 10.3934/amc.2018037

[8]

Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417

[9]

Daniel Heinlein, Sascha Kurz. Binary subspace codes in small ambient spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 817-839. doi: 10.3934/amc.2018048

[10]

Tsonka Baicheva, Iliya Bouyukliev. On the least covering radius of binary linear codes of dimension 6. Advances in Mathematics of Communications, 2010, 4 (3) : 399-404. doi: 10.3934/amc.2010.4.399

[11]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[12]

Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163

[13]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

[14]

Somphong Jitman, Ekkasit Sangwisut. The average dimension of the Hermitian hull of constacyclic codes over finite fields of square order. Advances in Mathematics of Communications, 2018, 12 (3) : 451-463. doi: 10.3934/amc.2018027

[15]

Joaquim Borges, Josep Rifà, Victor Zinoviev. Completely regular codes by concatenating Hamming codes. Advances in Mathematics of Communications, 2018, 12 (2) : 337-349. doi: 10.3934/amc.2018021

[16]

Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131

[17]

M. B. Paterson, D. R. Stinson, R. Wei. Combinatorial batch codes. Advances in Mathematics of Communications, 2009, 3 (1) : 13-27. doi: 10.3934/amc.2009.3.13

[18]

Noam Presman, Simon Litsyn. Recursive descriptions of polar codes. Advances in Mathematics of Communications, 2017, 11 (1) : 1-65. doi: 10.3934/amc.2017001

[19]

Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83

[20]

Kwankyu Lee. Decoding of differential AG codes. Advances in Mathematics of Communications, 2016, 10 (2) : 307-319. doi: 10.3934/amc.2016007

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (39)
  • HTML views (284)
  • Cited by (0)

[Back to Top]