2016, 10(1): 163-177. doi: 10.3934/amc.2016.10.163

Composition codes

1. 

Department of Information Engineering, University of Padua, Italy

2. 

CIDMA, Department of Mathematics, University of Aveiro, Portugal, Portugal

3. 

SYSTEC, Faculty of Engineering, University of Porto, Portugal

Received  December 2014 Revised  July 2015 Published  March 2016

In this paper we introduce a special class of 2D convolutional codes, called composition codes, which admit encoders $G(d_1,d_2)$ that can be decomposed as the product of two 1D encoders, i.e., $ G(d_1,d_2)=G_2(d_2)G_1(d_1)$. Taking into account this decomposition, we obtain syndrome formers of the code directly from $G_1(d_1)$ and $ G_2(d_2)$, in case $G_1(d_1)$ and $ G_2(d_2)$ are right prime. Moreover we consider 2D state-space realizations by means of a separable Roesser model of the encoders and syndrome formers of a composition code and we investigate the minimality of such realizations. In particular, we obtain minimal realizations for composition codes which admit an encoder $G(d_1,d_2)=G_2(d_2)G_1(d_1)$ with $G_2(d_2)$ a systematic 1D encoder. Finally, we investigate the minimality of 2D separable Roesser state-space realizations for syndrome formers of these codes.
Citation: Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163
References:
[1]

S. Attasi, Systèmes linéaires homogènes à deux indices,, in Rapport Laboria, (1973).

[2]

E. Fornasini and G. Marchesini, Algebraic realization theory of two-dimensional filters,, in Variable Structure Systems with Application to Economics and Biology (eds. A. Ruberti and R. Mohler), (1975), 64.

[3]

E. Fornasini and R. Pinto, Matrix fraction descriptions in convolutional coding,, Linear Algebra Appl., 392 (2004), 119. doi: 10.1016/j.laa.2004.06.007.

[4]

E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes,, IEEE Trans. Inf. Theory, 40 (1994), 1068. doi: 10.1109/18.335967.

[5]

G. Forney, Convolutional Codes I: Algebraic structure,, IEEE Trans. Inf. Theory, 16 (1970), 720.

[6]

G. Forney, Structural analysis of convolutional codes via dual codes,, IEEE Trans. Inf. Theory, 19 (1973), 512.

[7]

B. Levy, 2D Polynomial and Rational Matrices, and their Applications for the Modeling of 2-D Dynamical Systems,, Ph.D thesis, (1981).

[8]

T. Lin, M. Kawamata and T. Higuchi, Decomposition of 2-D separable-denominator systems: Existence, uniqueness, and applications,, IEEE Trans. Circ. Syst., 34 (1987), 292. doi: 10.1109/TCS.1987.1086219.

[9]

T. Pinho, Minimal State-Space Realizations of 2D Convolutional Codes,, Ph.D thesis, (2014).

[10]

T. Pinho, R. Pinto and P. Rocha, Realization of 2D convolutional codes of rate $\frac1n$ by separable Roesser models,, Des. Codes Crypt., 70 (2014), 241. doi: 10.1007/s10623-012-9768-1.

[11]

P. Rocha, Representation of noncausal 2D systems,, in New Trends in Systems Theory, (1991), 630.

[12]

R. P. Roesser, A Discrete State-Space Model for Linear Image Processing,, IEEE Trans. Automat. Control, 20 (1975), 1.

[13]

M. E. Valcher and E. Fornasini, On 2D finite support convolutional codes,, Multidim. Syst. Signal Proc., 5 (1994), 231. doi: 10.1007/BF00980707.

[14]

P. A. Weiner, Multidimensional Convolutional Codes,, Ph.D thesis, (1998).

[15]

J. C. Willems, Models for dynamics,, in Dynamics Reported (eds. U. Kirchgraber and H.O. Walther), (1989), 171.

show all references

References:
[1]

S. Attasi, Systèmes linéaires homogènes à deux indices,, in Rapport Laboria, (1973).

[2]

E. Fornasini and G. Marchesini, Algebraic realization theory of two-dimensional filters,, in Variable Structure Systems with Application to Economics and Biology (eds. A. Ruberti and R. Mohler), (1975), 64.

[3]

E. Fornasini and R. Pinto, Matrix fraction descriptions in convolutional coding,, Linear Algebra Appl., 392 (2004), 119. doi: 10.1016/j.laa.2004.06.007.

[4]

E. Fornasini and M. E. Valcher, Algebraic aspects of two-dimensional convolutional codes,, IEEE Trans. Inf. Theory, 40 (1994), 1068. doi: 10.1109/18.335967.

[5]

G. Forney, Convolutional Codes I: Algebraic structure,, IEEE Trans. Inf. Theory, 16 (1970), 720.

[6]

G. Forney, Structural analysis of convolutional codes via dual codes,, IEEE Trans. Inf. Theory, 19 (1973), 512.

[7]

B. Levy, 2D Polynomial and Rational Matrices, and their Applications for the Modeling of 2-D Dynamical Systems,, Ph.D thesis, (1981).

[8]

T. Lin, M. Kawamata and T. Higuchi, Decomposition of 2-D separable-denominator systems: Existence, uniqueness, and applications,, IEEE Trans. Circ. Syst., 34 (1987), 292. doi: 10.1109/TCS.1987.1086219.

[9]

T. Pinho, Minimal State-Space Realizations of 2D Convolutional Codes,, Ph.D thesis, (2014).

[10]

T. Pinho, R. Pinto and P. Rocha, Realization of 2D convolutional codes of rate $\frac1n$ by separable Roesser models,, Des. Codes Crypt., 70 (2014), 241. doi: 10.1007/s10623-012-9768-1.

[11]

P. Rocha, Representation of noncausal 2D systems,, in New Trends in Systems Theory, (1991), 630.

[12]

R. P. Roesser, A Discrete State-Space Model for Linear Image Processing,, IEEE Trans. Automat. Control, 20 (1975), 1.

[13]

M. E. Valcher and E. Fornasini, On 2D finite support convolutional codes,, Multidim. Syst. Signal Proc., 5 (1994), 231. doi: 10.1007/BF00980707.

[14]

P. A. Weiner, Multidimensional Convolutional Codes,, Ph.D thesis, (1998).

[15]

J. C. Willems, Models for dynamics,, in Dynamics Reported (eds. U. Kirchgraber and H.O. Walther), (1989), 171.

[1]

Géry de Saxcé, Claude Vallée. Structure of the space of 2D elasticity tensors. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1525-1537. doi: 10.3934/dcdss.2013.6.1525

[2]

Diego Napp, Carmen Perea, Raquel Pinto. Input-state-output representations and constructions of finite support 2D convolutional codes. Advances in Mathematics of Communications, 2010, 4 (4) : 533-545. doi: 10.3934/amc.2010.4.533

[3]

Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic & Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685

[4]

Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145

[5]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[6]

Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297

[7]

Nils Dabrock, Yves van Gennip. A note on "Anisotropic total variation regularized $L^1$-approximation and denoising/deblurring of 2D bar codes". Inverse Problems & Imaging, 2018, 12 (2) : 525-526. doi: 10.3934/ipi.2018022

[8]

Rustum Choksi, Yves van Gennip, Adam Oberman. Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes. Inverse Problems & Imaging, 2011, 5 (3) : 591-617. doi: 10.3934/ipi.2011.5.591

[9]

Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673

[10]

Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080

[11]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[12]

Brian Ryals, Robert J. Sacker. Global stability in the 2D Ricker equation revisited. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 585-604. doi: 10.3934/dcdsb.2017028

[13]

Leonardo Kosloff, Tomas Schonbek. Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1025-1043. doi: 10.3934/dcdss.2014.7.1025

[14]

Yuri N. Fedorov, Luis C. García-Naranjo, Joris Vankerschaver. The motion of the 2D hydrodynamic Chaplygin sleigh in the presence of circulation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4017-4040. doi: 10.3934/dcds.2013.33.4017

[15]

Makram Hamouda, Chang-Yeol Jung, Roger Temam. Boundary layers for the 2D linearized primitive equations. Communications on Pure & Applied Analysis, 2009, 8 (1) : 335-359. doi: 10.3934/cpaa.2009.8.335

[16]

A. Rousseau, Roger Temam, J. Tribbia. Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1257-1276. doi: 10.3934/dcds.2005.13.1257

[17]

Tetsu Mizumachi. Instability of bound states for 2D nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 413-428. doi: 10.3934/dcds.2005.13.413

[18]

Tian Ma, Shouhong Wang. Structure of 2D incompressible flows with the Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 29-41. doi: 10.3934/dcdsb.2001.1.29

[19]

Jutta Bikowski, Jennifer L. Mueller. 2D EIT reconstructions using Calderon's method. Inverse Problems & Imaging, 2008, 2 (1) : 43-61. doi: 10.3934/ipi.2008.2.43

[20]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]