
Previous Article
Selfdual $\mathbb{F}_q$linear $\mathbb{F}_{q^t}$codes with an automorphism of prime order
 AMC Home
 This Issue

Next Article
Generalizations of Verheul's theorem to asymmetric pairings
New constructions of optimal frequency hopping sequences with new parameters
1.  The Thirtieth Research Institute, China Electronic Technology Group Corporation, Chengdu, China 
2.  School of Mobile Communications, Southwest Jiaotong University, Chengdu, 610031, China, China 
3.  School of Mathematics, Southwest Jiaotong University, Chengdu, 610031 
References:
[1] 
T. M. Apostol, "Introduction to Analytic Number Theory,'', SpringerVerlag, (1976). 
[2] 
W. Chu and C. J. Colbourn, Optimal frequencyhopping sequences via cyclotomy,, IEEE Trans. Inform. Theory, 51 (2005), 1139. 
[3] 
J. H. Chung, and K. Yang, Optimal frequencyhopping sequences with new parameters,, IEEE Trans. Inform. Theory, 56 (2010), 1685. 
[4] 
C. Ding, Autocorrelation values of generalized cyclotomic sequences of order two,, IEEE Trans. Inform. Theory, 44 (1998), 1699. 
[5] 
C. Ding, R. FujiHara, and Y. Fujiwara, Sets of frequency hopping sequences: bounds and optimal constructions,, IEEE Trans. Inform. Theory, 55 (2009), 3297. doi: 10.1109/TIT.2009.2021366. 
[6] 
C. Ding and T. Helleseth, New generalized cyclotomy and its applications,, Finite Fields Appl., 4 (1998), 140. 
[7] 
C. Ding and T. Helleseth, Generalized cyclotomic codes of length $p_1^{e_1}\cdots p_t^{e_t}$,, IEEE Trans. Inform. Theory, 45 (1999), 467. 
[8] 
C. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequencyhopping sequences,, IEEE Trans. Inform. Theory, 53 (2007), 2606. doi: 10.1109/TIT.2007.899545. 
[9] 
C. Ding and J. Yin, Sets of optimal frequencyhopping sequences,, IEEE Trans. Inform. Theory, 54 (2008), 3741. 
[10] 
P. Z. Fan, M. H. Lee and D. Y. Peng, New family of hopping sequences for time/frequencyhopping CDMA systems,, IEEE Trans. Inform. Theory, 4 (2005), 2836. 
[11] 
R. FujiHara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: a combinatorial approach,, IEEE Trans. Inform. Theory, 50 (2004), 2408. doi: 10.1109/TIT.2004.834783. 
[12] 
G. Ge, Y. Miao and Z. H. Yao, Optimal frequency hopping sequences: auto and crosscorrelation properties,, IEEE Trans. Inform. Theory, 55 (2008), 867. 
[13] 
Y. K. Han and K. Yang, On the Sidelnikov sequences as frequencyhopping sequences,, IEEE Trans. Inform. Theory, 55 (2009), 4279. 
[14] 
J. J. Komo and S. C. Liu, Maximal length sequences for frequency hopping,, IEEE J. Select. Areas Commun., 8 (1990), 819. 
[15] 
A. Lempel and H. Greenberger, Families of sequences with optimal hamming correlation properties,, IEEE Trans. Inform. Theory, 20 (1974), 90. doi: 10.1109/TIT.1974.1055169. 
[16] 
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto and crosscorrelations of frequencyhopping sequences,, IEEE Trans. Inform. Theory, 50 (2004), 2149. doi: 10.1109/TIT.2004.833362. 
[17] 
P. Udaya and M. N. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings,, IEEE Trans. Inform. Theory, IT44 (1998), 1492. 
[18] 
A. L. Whiteman, A family of difference sets,, Illinois J. Math., 6 (1962), 107. 
[19] 
M. Z. Win and R. A. Scholtz, UltraWide Bandwidth timehopping spreadspectrum impulse radio for wireless multipleaccess communications,, IEEE Trans. Commun., 58 (2002), 679. 
show all references
References:
[1] 
T. M. Apostol, "Introduction to Analytic Number Theory,'', SpringerVerlag, (1976). 
[2] 
W. Chu and C. J. Colbourn, Optimal frequencyhopping sequences via cyclotomy,, IEEE Trans. Inform. Theory, 51 (2005), 1139. 
[3] 
J. H. Chung, and K. Yang, Optimal frequencyhopping sequences with new parameters,, IEEE Trans. Inform. Theory, 56 (2010), 1685. 
[4] 
C. Ding, Autocorrelation values of generalized cyclotomic sequences of order two,, IEEE Trans. Inform. Theory, 44 (1998), 1699. 
[5] 
C. Ding, R. FujiHara, and Y. Fujiwara, Sets of frequency hopping sequences: bounds and optimal constructions,, IEEE Trans. Inform. Theory, 55 (2009), 3297. doi: 10.1109/TIT.2009.2021366. 
[6] 
C. Ding and T. Helleseth, New generalized cyclotomy and its applications,, Finite Fields Appl., 4 (1998), 140. 
[7] 
C. Ding and T. Helleseth, Generalized cyclotomic codes of length $p_1^{e_1}\cdots p_t^{e_t}$,, IEEE Trans. Inform. Theory, 45 (1999), 467. 
[8] 
C. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequencyhopping sequences,, IEEE Trans. Inform. Theory, 53 (2007), 2606. doi: 10.1109/TIT.2007.899545. 
[9] 
C. Ding and J. Yin, Sets of optimal frequencyhopping sequences,, IEEE Trans. Inform. Theory, 54 (2008), 3741. 
[10] 
P. Z. Fan, M. H. Lee and D. Y. Peng, New family of hopping sequences for time/frequencyhopping CDMA systems,, IEEE Trans. Inform. Theory, 4 (2005), 2836. 
[11] 
R. FujiHara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: a combinatorial approach,, IEEE Trans. Inform. Theory, 50 (2004), 2408. doi: 10.1109/TIT.2004.834783. 
[12] 
G. Ge, Y. Miao and Z. H. Yao, Optimal frequency hopping sequences: auto and crosscorrelation properties,, IEEE Trans. Inform. Theory, 55 (2008), 867. 
[13] 
Y. K. Han and K. Yang, On the Sidelnikov sequences as frequencyhopping sequences,, IEEE Trans. Inform. Theory, 55 (2009), 4279. 
[14] 
J. J. Komo and S. C. Liu, Maximal length sequences for frequency hopping,, IEEE J. Select. Areas Commun., 8 (1990), 819. 
[15] 
A. Lempel and H. Greenberger, Families of sequences with optimal hamming correlation properties,, IEEE Trans. Inform. Theory, 20 (1974), 90. doi: 10.1109/TIT.1974.1055169. 
[16] 
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto and crosscorrelations of frequencyhopping sequences,, IEEE Trans. Inform. Theory, 50 (2004), 2149. doi: 10.1109/TIT.2004.833362. 
[17] 
P. Udaya and M. N. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings,, IEEE Trans. Inform. Theory, IT44 (1998), 1492. 
[18] 
A. L. Whiteman, A family of difference sets,, Illinois J. Math., 6 (1962), 107. 
[19] 
M. Z. Win and R. A. Scholtz, UltraWide Bandwidth timehopping spreadspectrum impulse radio for wireless multipleaccess communications,, IEEE Trans. Commun., 58 (2002), 679. 
[1] 
Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequencyhopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 5562. doi: 10.3934/amc.2015.9.55 
[2] 
Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359373. doi: 10.3934/amc.2014.8.359 
[3] 
Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequencyhopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373391. doi: 10.3934/amc.2019024 
[4] 
Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151159. doi: 10.3934/amc.2017009 
[5] 
Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293310. doi: 10.3934/amc.2013.7.293 
[6] 
Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal lowhitzone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 6779. doi: 10.3934/amc.2018004 
[7] 
Lenny Fukshansky, Ahmad A. Shaar. A new family of onecoincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181188. doi: 10.3934/amc.2018012 
[8] 
Pinhui Ke, Yueqin Jiang, Zhixiong Chen. On the linear complexities of two classes of quaternary sequences of even length with optimal autocorrelation. Advances in Mathematics of Communications, 2018, 12 (3) : 525539. doi: 10.3934/amc.2018031 
[9] 
Oǧuz Yayla. Nearly perfect sequences with arbitrary outofphase autocorrelation. Advances in Mathematics of Communications, 2016, 10 (2) : 401411. doi: 10.3934/amc.2016014 
[10] 
Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387413. doi: 10.3934/amc.2018024 
[11] 
Alonso sepúlveda Castellanos. Generalized Hamming weights of codes over the $\mathcal{GH}$ curve. Advances in Mathematics of Communications, 2017, 11 (1) : 115122. doi: 10.3934/amc.2017006 
[12] 
Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209222. doi: 10.3934/amc.2014.8.209 
[13] 
Olav Geil, Stefano Martin. Relative generalized Hamming weights of qary ReedMuller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503531. doi: 10.3934/amc.2017041 
[14] 
Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237244. doi: 10.3934/amc.2017015 
[15] 
Zilong Wang, Guang Gong, Rongquan Feng. A generalized construction of OFDM $M$QAM sequences with low peaktoaverage power ratio. Advances in Mathematics of Communications, 2009, 3 (4) : 421428. doi: 10.3934/amc.2009.3.421 
[16] 
Tongjiang Yan, Yanyan Liu, Yuhua Sun. Cyclic codes from twoprime generalized cyclotomic sequences of order 6. Advances in Mathematics of Communications, 2016, 10 (4) : 707723. doi: 10.3934/amc.2016036 
[17] 
Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359366. doi: 10.3934/amc.2017029 
[18] 
Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505513. doi: 10.3934/amc.2018029 
[19] 
Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete & Continuous Dynamical Systems  A, 2011, 31 (3) : 847875. doi: 10.3934/dcds.2011.31.847 
[20] 
Joaquim Borges, Josep Rifà, Victor Zinoviev. Completely regular codes by concatenating Hamming codes. Advances in Mathematics of Communications, 2018, 12 (2) : 337349. doi: 10.3934/amc.2018021 
2017 Impact Factor: 0.564
Tools
Metrics
Other articles
by authors
[Back to Top]