2012, 6(2): 121-130. doi: 10.3934/amc.2012.6.121

On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$

1. 

Department of Mathematics, KTH, S-100 44 Stockholm

2. 

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli, 1, I-06123 Perugia

Received  January 2011 Revised  August 2011 Published  April 2012

It is proved that for every integer $n=2^k-1$, with $k\geq5$, there exists a perfect code $C$ of length $n$, of rank $r=n-\log(n+1)+2$ and with a trivial symmetry group. This result extends an earlier result by the authors that says that for any length $n=2^k-1$, with $k\geq5$, and any rank $r$, with $n-\log(n+1)+3\leq r\leq n-1$ there exist perfect codes with a trivial symmetry group.
Citation: Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$. Advances in Mathematics of Communications, 2012, 6 (2) : 121-130. doi: 10.3934/amc.2012.6.121
References:
[1]

S. V. Avgustinovich, O. Heden and F. I. Solov'eva, The classification of some perfect codes,, Des. Codes Cryptogr., 31 (2004), 313. doi: 10.1023/B:DESI.0000015891.01562.c1.

[2]

S. V. Avgustinovich, O. Heden and F. I. Solov'eva, On the structure of symmetry groups of Vasilev codes,, Probl. Inform. Transm., 41 (2005), 105. doi: 10.1007/s11122-005-0015-5.

[3]

O. Heden, On the kernel of binary perfect 1-error correcting codes of length 15,, manuscript, (1987).

[4]

O. Heden, A survey of perfect codes,, Adv. Math. Commun., 2 (2008), 223. doi: 10.3934/amc.2008.2.223.

[5]

O. Heden, F. Pasticci and T. Westerbäck, On the existence of extended perfect binary codes with trivial symmetry group,, Adv. Math. Commun., 3 (2009), 295. doi: 10.3934/amc.2009.3.295.

[6]

K. T. Phelps, A general product construction for error correcting Codes,, SIAM J. Algebra Discrete Methods, 5 (1984), 224. doi: 10.1137/0605023.

[7]

K. T. Phelps, O. Pottonen and P. R. J. Östergård, The perfect binary one-error-correcting codes of length 15: Part II properties,, IEEE Trans. Inform. Theory, 56 (2010), 2571. doi: 10.1109/TIT.2010.2046197.

[8]

F. I. Solov'eva, "On Perfect Codes and Related Topics,'', Pohang, (2004).

[9]

V. A. Zinoviev, On generalized concatenated codes,, in, (1975), 587.

[10]

V. A. Zinoviev, Generalized cascade codes,, Probl. Inform. Transm., 12 (1976), 5.

[11]

V. A. Zinoviev and D. A. Zinoviev, Binary perfect and extended perfect codes of length 15 and 16 with ranks 13 and 14 (in Russian),, Problemy Peredachi Informatsii, 46 (2010), 20.

show all references

References:
[1]

S. V. Avgustinovich, O. Heden and F. I. Solov'eva, The classification of some perfect codes,, Des. Codes Cryptogr., 31 (2004), 313. doi: 10.1023/B:DESI.0000015891.01562.c1.

[2]

S. V. Avgustinovich, O. Heden and F. I. Solov'eva, On the structure of symmetry groups of Vasilev codes,, Probl. Inform. Transm., 41 (2005), 105. doi: 10.1007/s11122-005-0015-5.

[3]

O. Heden, On the kernel of binary perfect 1-error correcting codes of length 15,, manuscript, (1987).

[4]

O. Heden, A survey of perfect codes,, Adv. Math. Commun., 2 (2008), 223. doi: 10.3934/amc.2008.2.223.

[5]

O. Heden, F. Pasticci and T. Westerbäck, On the existence of extended perfect binary codes with trivial symmetry group,, Adv. Math. Commun., 3 (2009), 295. doi: 10.3934/amc.2009.3.295.

[6]

K. T. Phelps, A general product construction for error correcting Codes,, SIAM J. Algebra Discrete Methods, 5 (1984), 224. doi: 10.1137/0605023.

[7]

K. T. Phelps, O. Pottonen and P. R. J. Östergård, The perfect binary one-error-correcting codes of length 15: Part II properties,, IEEE Trans. Inform. Theory, 56 (2010), 2571. doi: 10.1109/TIT.2010.2046197.

[8]

F. I. Solov'eva, "On Perfect Codes and Related Topics,'', Pohang, (2004).

[9]

V. A. Zinoviev, On generalized concatenated codes,, in, (1975), 587.

[10]

V. A. Zinoviev, Generalized cascade codes,, Probl. Inform. Transm., 12 (1976), 5.

[11]

V. A. Zinoviev and D. A. Zinoviev, Binary perfect and extended perfect codes of length 15 and 16 with ranks 13 and 14 (in Russian),, Problemy Peredachi Informatsii, 46 (2010), 20.

[1]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the existence of extended perfect binary codes with trivial symmetry group. Advances in Mathematics of Communications, 2009, 3 (3) : 295-309. doi: 10.3934/amc.2009.3.295

[2]

Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699

[3]

Olof Heden. A survey of perfect codes. Advances in Mathematics of Communications, 2008, 2 (2) : 223-247. doi: 10.3934/amc.2008.2.223

[4]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[5]

Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems & Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465

[6]

Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83

[7]

L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 68-77. doi: 10.3934/proc.2003.2003.68

[8]

Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149

[9]

Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425

[10]

Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385

[11]

Jamshid Moori, Amin Saeidi. Some designs and codes invariant under the Tits group. Advances in Mathematics of Communications, 2017, 11 (1) : 77-82. doi: 10.3934/amc.2017003

[12]

Cristina García Pillado, Santos González, Victor Markov, Consuelo Martínez, Alexandr Nechaev. New examples of non-abelian group codes. Advances in Mathematics of Communications, 2016, 10 (1) : 1-10. doi: 10.3934/amc.2016.10.1

[13]

Axel Kohnert, Johannes Zwanzger. New linear codes with prescribed group of automorphisms found by heuristic search. Advances in Mathematics of Communications, 2009, 3 (2) : 157-166. doi: 10.3934/amc.2009.3.157

[14]

Bernardo Gabriel Rodrigues. Some optimal codes related to graphs invariant under the alternating group $A_8$. Advances in Mathematics of Communications, 2011, 5 (2) : 339-350. doi: 10.3934/amc.2011.5.339

[15]

Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193

[16]

Pavel Bachurin, Konstantin Khanin, Jens Marklof, Alexander Plakhov. Perfect retroreflectors and billiard dynamics. Journal of Modern Dynamics, 2011, 5 (1) : 33-48. doi: 10.3934/jmd.2011.5.33

[17]

Marcela Mejía, J. Urías. An asymptotically perfect pseudorandom generator. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 115-126. doi: 10.3934/dcds.2001.7.115

[18]

Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with $d$-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002

[19]

A. V. Borisov, I.S. Mamaev, S. M. Ramodanov. Dynamics of two interacting circular cylinders in perfect fluid. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 235-253. doi: 10.3934/dcds.2007.19.235

[20]

Yves Edel, Alexander Pott. A new almost perfect nonlinear function which is not quadratic. Advances in Mathematics of Communications, 2009, 3 (1) : 59-81. doi: 10.3934/amc.2009.3.59

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]